When Should Formal Methods be Used?

Donna C. Stidolph

Abtract
The goal of this paper is to provide a list of factors to be considered by software managers when evaluating whether or not formal methods are appropriate for a given project, based on a review of the literature describing their use on "real life" projects. There are numerous resources for implementers of formal methods, but very few address the problems of running a formal methods project in a commercial software development environment. This paper is intended to help managers decide if formal methods should be used and some factors should be considered if they are used.

Table of Contents

iIntroduction

Background
2
Reasons for Non-Take Up of Formal Methods
3
Why Formal Methods Might Be Getting More Interesting
4
Methods and Data Summary
6
Discussion
16
Go - No Go Conditions
17
You have a really good reason.
17
The development is internal, or on a shared-risk contractual vehicle.
18
You Have Management Buy In
18
If You Still Think You Might Do It . . .
20
Don't buy, rent.
20
There must be a solid software development process in place.
21
There must be one or more expert consultants available.
22
You need "early adopters"
22
Know exactly where you need the extra effort.
22
Select an appropriate program phase.
23
You'll probably "lose" your domain experts to the development.
24
Select the right languages and/or tools
24
There are different levels of application of formal methods
25
Formal methods complement other techniques, but they don't constitute a methodology by themselves.
25
What can you do about estimating the cost of formal methods?
26
Areas for Future Investigation
28
Invent Heuristics and Standard Metrics for Formal Methods Projects
28
Compare the Life Cycle Costs between "Standard" and Formal Methods Development Programs
28
Impact of Formal Methods Use on Post-Delivery Failure Rates
28
Contributions of this Paper
29
Appendix 1
Useful Web Sites
30
Appendix 2
Table 1 Detailed Data
30
Appendix 3
Questionnaire
46
Appendix 4
Glossary/Acronyms
48

Table of Tables

9Table 1. Summary of Case Studies with Cost Detail

Table 2 Recent Formal Methods Successes
16
Table 3. Comparison of Time Spent vs Program Phase
18

Table of Figures

Figure 1. Size Distribution in SLOC for Table 1 Applications
13

Figure 2. Size Distribution in SLOC for FME Database Applications
13

Figure 3. Comparison of Time Spent vs Program Phase
14

Figure 4. Language/Tool Distribution in SLOC for Table 1 Cases
14

Figure 5. Formal Methods Use in Program Phases
15

Figure 6. Formal Methods Distribution by Industry Sector
15

Figure 7. Hours Expended per Program Phase in a Traditional and Formal Methods Development
18

Introduction

Formal methods for software systems are " . . . mathematically based languages, techniques, and tools for specifying and verifying such systems." (Wing and Clarke 1996). Formal methods have been discussed for years as a means of introducing rigor into the practice of software engineering (Liskov and Zilles 1975). Further, it has been thought that they are particularly applicable when high degrees of reliability and correctness are required, such as in safety critical or high security transactions (Leveson 1986).

Until recently formal methods have only been applied as after-the-fact proofs of concept or on toy-sized applications; however, they may become more mainstream in the near future (Parnas 1998). Various regulatory and advisory bodies are starting to recognize that formal methods may be an effective method of building confidence in a design. The issues listed below can be addressed, at least partially, by formal methods. Some of these would be effective drivers to adoption by themselves, and they are more compelling in combination:

· Software is pervasive in "risky" applications, such as money handling, medical technology and transportation systems (Haxthausen and Peleska 1999). In each of these areas, as acquirers become more sophisticated, they will require more assurance that their application is providing the expected functionality. Further, the more informed the customer, the more likely they are to understand the cost of certainty.

· Recognition that there may be legal liability for the consequences of non-performing software. Application of formal methods may help avoid non-performing software in the first place and, should the software still not meet expectations, the use of formal methods could demonstrate that the executing organization was diligent in their efforts to meet their obligations.

· Suspicion that the point of diminishing returns may have been reached in the area of improvement in coding practices and techniques. In this case, mature software organizations have provided training, rigorous processes and efficient development environments for their programmers for years and productivity has improved. Analysis of errors discovered in test may show that the flaws weren't in the design or the coding, but in the specification - either it is incomplete, ambiguous or internally inconsistent. Formal methods are one approach to increase the probability of complete and consistent specifications for designers and coders.

· Concern about the consequences of legacy software systems being used far beyond their presumed life span and for purposes that weren't even imagined by their creators. The concerns here are that the systems are probably not specified in sufficient detail for maintainers to ensure that there are no unintended side effects to maintenance activities. Formal methods have been used in the reverse engineering process to document findings about legacy systems and to discover and repair problems in the original specification.

· Proliferation of software standards (audio, video, multimedia, etc.) Formal methods can be used to give the community confidence that the standards are complete and internally consistent.

The goal of this paper is to provide a list of factors to be considered by software managers when evaluating whether or not formal methods are appropriate for a given project, based on a review of the literature describing their use on "real life" projects. There are numerous resources for implementers of formal methods, but very few address the problems of running a formal methods project in a commercial software development environment. This paper is intended to help managers decide if formal methods should be used and what effect they will have on program schedules, resources and budgets.

Guidelines are developed for assessing potential formal methods applications with respect to the structure of both the business and development environments. The remainder of this paper consists of background, a summary of the data examined, discussion and conclusions. An acronym list is provided.

Background

Formal methods have not come into common use by the community of practicing software engineers; in fact, practitioners don't seem to know what they are. For example, the following quote appears in the Software Engineering Institute's (SEI) 1999 Survey of High Maturity Organizations, a survey of Capability Maturity Model (CMM) level 4 and 5 organizations (1999):

Many of the respondents reported using formal methods. This was a surprising result, given the results of previous surveys and workshops. Follow-up indicates there was ambiguity in how "formal method" was interpreted, and at least some respondents interpreted a "formal method" as any method that was documented. No respondent, in clarifying his or her response, indicated the use of "formal method" in the sense of mathematical rigor, e.g., proof of correctness, that was intended by the question.

This situation is recognized by the formal methods community itself (Heitmeyer 1998) (Bowen 1997) and there appear to be a few commonly recognized reasons for it:

· Application of formal methods requires discrete math skills.

· Formal methods take time.

· The tools are awkward and buggy.

· You need an expert to get started.

· It is expensive (you have to pay extra for all the items listed above.)

There are many concrete examples of this: British Aerospace reports a factor of seven decrease in programmer productivity going from a non-safety critical development project to a full formal methods development, and other surveys report that productivity is reduced by half (Bowen 1993; Bowen and Stavridou 1997). NASA, an important booster of formal methods in the United States, identifies inadequate tools, inadequate examples and lack of appreciation of real world considerations on the part of the formal methods community as the primary reasons formal methods aren't being used in industry(1999). A somewhat plaintive statement by a practitioner backs this up:

. . . We have however had a certain amount of success with applying other formal methods in industry, although it seems to be very hard to get the methods to “stick.”

Reasons for Non-Take Up of Formal Methods

Other software methodologies have overcome these hurdles, so why not formal methods? There seem to be a number of reasons, with lack of return on investment being the most significant. (See (Craigen 1999) for a discussion of this with respect to one method.) While most technologies that have academic origins and migrated to industry, such as object oriented analysis, offer a plausible chance of increasing productivity, formal methods do not offer that incentive. There have been very few instances, IBM's CICs development is one, where the use of formal methods has resulted in even the perception of cost savings (Finney and Fenton 1996). It is enlightening to consider that one of the most accepted uses of formal methods in software is in the production of protocols and algorithms, where the cost of the formal methods can be amortized across all uses of the algorithm or protocol (Heitmeyer 1998; Jackson 1998). Although formal methods can result in improved safety and reliability of software products, few organizations assign dollar values to improvements in those areas; if there is no measurement for the improvement, it is perceived as a cost with no resulting benefit.

Another difference is that many of the other disciplined approaches, such as object oriented analysis or structured design, offer methods to simplify the view of the system, for the designer, the customers, or both. The creation of these “simple” views requires discipline by the system design team, and the abstractions aid team members in orienting themselves when they are learning system details. Formal methods drive to the detail of a system immediately. For reviewers or team members unfamiliar with formal method notation, the use of the unfamiliar symbol set combined with the required level of detail makes system operation more opaque, rather than less. Further, since successful application of formal methods requires clear understanding of the system or module requirements, they can best be applied after the informal requirements have been analyzed fairly rigorously. Since requirements are frequently not done at all, much less rigorously, the cost of requirements analysis is added to the cost of the formal methods and the total comes out looking outrageously expensive.

A final reason for the slow adoption of formal methods is that their natural home seems to be in safety critical applications, since organizations that create such software understand how to value building in safety. However, because of their emphasis on safety, people who acquire such systems are wary of adopting new technologies until they are proven. The problem here, then, is that the arena in which formal methods are most likely to prove their worth is in the safety critical area - but the safety community (not the formal methods community) is reluctant to rely on them until they are proven. This is illustrated by the fact that until recently, not only was the use of formal methods not required, they were not identified as useful augmentations to a development process in the procurement documents for safety-driven government regulatory agencies such as the FAA. Since they were not mandated, and no guidance was given to either the potential provider or the acquirer, it was very difficult to justify the additional cost and development schedule uncertainty introduced by the use of formal methods.

Another facet of safety critical applications is that a relatively large proportion of them are government sponsored and, in many cases, have security requirements, restricting the pool of academic consultants available.

Formal methods have been successfully applied in hardware development (Jagadeesan, Godefroid et al.) (Craigen and Gerhrt 1995). Heitmeyer (Heitmeyer 1998) attributes the difference in utility of formal methods between the software and hardware disciplines to (1) the limited number of design languages used for hardware development (Verilog, VHDL) and (2) use of automated engineering tool suites. CAE tools are much less common and much less standard in the software world, and design languages are virtually unused in the software industry, although UML is gaining ground and the formal methods community is beginning to exploit it (Dupuy-Chessa and du Bousquet 2001; Eshuis and Wieringa).

The combined result of these factors is that the size of the non-academic development formal methods development community has not reached critical mass. That is, formal methods are frequently not considered for use because of ignorance about them, and because they are not in general use, the community of informed users remains small.

Why Formal Methods Might Be Getting More Interesting

Things are changing, though. In the United Kingdom, the Ministry of Defense (MoD) now requires the application of formal methods through code verification for certain classes of safety critical software, and the first generation of those applications are now being fielded (King, Hammond et al. 2000). In Canada, the Atomic Energy Control Board mandates the use of formal methods in control software for nuclear power stations (Bowen and Stavridou 1993). CENELEC, the European Committee for Electrotechnical Standardization, is scheduled to release IEC61508 (a safety standard) in August of 2002, which identifies four Safety Integrity Levels and methods to achieve them; and formal verification is identified as one of those methods. Finally, under the United Kingdom Information Technology Security Evaluation and Certification Scheme (ITSEC) products are tested and rated for six levels of security, and formal models are required for Levels 4, 5 and 6.

In the United States, the National Aeronautics and Space Administration (NASA) has issued a two volume handbook on formal methods (NASA 1997), one volume for acquirers and one for providers of formal methods. NASA has a developed a stable of formal methods gurus whom they are making available to their industrial contractors on an as-available basis. Finally, NASA is working with the FAA to incorporate formal methods as a required process in safety critical portions of flight software (Butler, Caldwell et al. 1995). Even if NASA is unsuccessful at convincing the FAA to incorporate formal methods requirements, they will propagate interest, if not knowledge, through the aerospace community.

Legal liability is another reason that formal methods may be becoming more widespread. It is becoming more and more common for litigation to result from failed software. In Europe, the Machine Safety Directive became law in 1993. This directive covers software and states that if it can be proved that a logic error caused an injury, the software provider can be sued in civil court. If negligence can be proved, the manager in charge can also prosecuted under the criminal code (Bowen and Stavridou 1997). This could have particular impact if precedents are set, and legacy systems are addressed.

Although the criminal penalties are small, awards in civil cases are not predictable and present a serious risk for companies providing services that can affect their customer's financial or physical well being. In those cases, it might be worth the investment to be able to demonstrate that all possible care had been taken to ensure that their software was reliable and safe - and formal methods would certainly add weight to such a contention.

An additional consideration is that formal methods can be used to document as-built software configurations to ensure that they do what their producers think they do, once again making it more likely that an unsafe product can be detected before it fails catastrophically.

Software organizations are continuing to look for highly leveraged ways to increase their productivity. NASA is beginning to think that optimizing the coding phase of development may soon reach a point of diminishing returns. NASA is finding seven times more errors during the requirements phase of development than during the coding phase. They believe that this indicates that they have hit a code "quality ceiling" (Easterbrook, Lutz et al. 1996). If this is the case, effort could be leveraged more effectively if put into (1) building a useful product the first time and (2) decreasing test time. NASA, at least, feels that formal methods can promote both of these goals by imposing rigor on requirements specification, by providing a means for exploring the full range of input/output conditions, and by resulting in ready-made test cases.

Another approach to increasing productivity is reuse; often sought, seldom seen. One of the major stumbling blocks is the categorization of the software components so candidates can be easily found and, once found, accurately assessed for suitability. Formal methods offer, at minimum, a place to start attacking this problem: if a component has been formally specified and documented, its characteristics can be unambiguously compared with the new requirements. A slightly different perspective on this is the ambiguity that may arise when matching one of the common object-oriented design patterns to a problem; it may be difficult to prove that one pattern is a better match to the problem than another because of the informality of the pattern descriptions. In (Flores, Moore et al. 2001), formal models of several object-oriented design patterns are developed, along with notation and the groundwork for characterizations of other patterns.

At a higher level of abstraction, formal specifications themselves are obvious candidates for reuse, since they are intended to be implementation-independent and their notation imposes more rigor than is typical of narrative specifications (Bowen 1995).

Businesses that are heavily involved in either specifying or using software standards might also be driven to at least understand formal specifications. In order to stay relevant, the International Organization for Standardization, (ISO) has started fastracking Publicly Available Specifications (PAS), but since they come from industry and the premium is being put on speed of availability, the standards are not receiving the rigorous review that ISO-originated standards usually do. As a result, there have been some experiments in using formal methods to specify and analyze PAS before they are accepted (Duce, Duke et al. 1999), and some discussion of disseminating them as formally specified documents. In a similar vein, formal methods have been used to investigate an architectural standard, Microsoft's Component Object Model (COM) (Feather 1998).

In support of this approach, (Iglesias, Gonzalez-Castano et al. 2001) successfully developed a protocol for introduction into GSM (Global System for Mobile Communications) networks, by first modeling the pertinent existing GSM protocols, then formally modeling their proposed new protocol and simulating their interactions at several levels. This implies that providing standards as formally specified documents not only provides the source organization with confidence in their clarity, but gives the using organizations with a useful starting place for developing their own formal and unambiguous specifications.

Finally, as business and financial markets depend more and more on software, there may be more and more application of formal methods in the e-business software world, both in the middleware that handles customer transactions and in consumer use products, such as smart cards (Sabatier and Larigue 1999). Agent-based architectures for e-commerce are also becoming targets for formal analysis as the e-commerce world moves towards large scale business collaborations, with software agents acting autonomously to build and manage complex transactions on an essentially unreliable medium, the Internet (Alagar and Xi 2001). As specifications such as Business Transaction Protocol (BTP) come into common use, it seems as though prudent organizations will require some proof of integrity before committing their corporate information to a software provider’s transaction processing software; and formal methods seems as if it could be useful approach.

For these reasons, a system engineer or program manager starting a task should at least consider the use of formal methods, even if the goal is only to ensure that the system doesn't dead or livelock with multiple customers hitting a web site, rather than guaranteeing personal safety, as on the Space Shuttle. Even if their use was rejected, the cost-benefit tradeoff could be performed and the risks and advantages could be explicitly examined.

Methods and Data Summary

Formal methods are not in wide use, but there are growing areas where they appear to be a natural tool. Faced with this situation, the purpose of this paper became to determine if there were rules for a software manager to follow to help select appropriate uses for formal methods and to increase the chances of a successful application of formal methods.

Literature searches were performed to find case studies involving any use of formal methods in the software industry in order to find or extract useful management information from them. The effect of the use of formal methods on development productivity and life cycle costs was of special interest, in order to be able to perform a cost/benefit analysis when considering the use of formal methods on a program. There were many examples of application to hardware, but the scope of this paper is restricted to software only. There are many case studies available (Randimbivololona, Souyris et al. 1999), (Haxthausen and Peleska 1999), but few of them include "business-oriented" information such as productivity and schedule impacts (if any), that allow them to be compared with industry norms to draw conclusions about the effectiveness of the formal methods (Jackson 1998). Table 1 describes those cases judged to have enough quantitative information to be useful for cross comparisons.

Table 1 presents the following information (as available for each study):

· The source article - if more than one article addresses the same case, the article with the most complete coverage is identified.

· Application domain - the domain of the application and the reason why formal methods were used.

· Application size, total - to provide some sense of the scope of the program, usually in lines of code (LOC).

· Application size, amount subjected to formal methods - to provide some sense of scope of the effort, in LOC when available.

· Application phase of development - what life cycle phase the target system was in when formal methods were applied.

· Availability of experts - whether there were experts available during the program. In some cases, the experts actually performed the work.

· Cost - usually in man-hours, rather than dollars.

· Effect of formal methods on productivity - if available.

· Method of adoption by engineers: training time, training type.

· Formal methods tool and/or language used.

· Level of formal methods used: specification, verification, machine verification. When formal methods are used for specification, they are usually applied by building a formal model of the specifications using a tool that employs a specification language. The tools vary wildly in capabilities, but frequently have static verification utilities, and some provide dynamic verification, allowing the users to make claims about the state of the system based on inputs and verify the claims using the verification utilities. The reasoning about the verification can be done as one of two approaches: program verification or program synthesis. In program verification, a program is verified for correctness against its specification. In program synthesis, a program is developed from the specification (Cheng and Auernheimer 1994). Although most projects have used tools, some have used manual methods.

· Success/failure as assessed by participants.

· Other factors/considerations.

The entries in Table 1 are grouped by formal method used.

Management metrics such as schedule and budget performance were obviously of interest. Application domain was of interest because certain domains might be more open to the use of formal methods because they understand both the costs and advantages of disciplined approaches to software. The size of the application was of interest in order to develop a sense of the scalability of the methods. However, not all applications used formal methods throughout the development cycle, so the phases in which they were used were identified.

Not all information is available in all case studies, and the common attributes are frequently quantified in different units. In several cases, information about one case was embedded in another - for example, the article "Integrating Z and Cleanroom" (Stavely 2000) gives metrics for three IBM formal methods efforts. A more complete table of the cases is included as Appendix 2.

In addition to the fairly complete case studies in Table 1, the Formal Methods Europe (FME) database provided a information on a large number of formal methods applications. FME is an organization whose mission is “promoting and supporting the industrial use of formal methods in computer systems development” and, as such, provides abstracts of various projects and contact information for the project principals. The information for each application is relatively standard for each of these, but is not of the kind or level of detail to support making business decisions. Although they don't provide metrics useful for costing comparisons, they do provide interesting insights into the types of problems that are being addressed, the tools being used, etc.

An attempt was made to augment the FME data by distributing a questionnaire to points of contact on the abstracts, as well as approximately 30 other practitioners who were identified during the literature search. However, only seven responses were received and only two of those were complete, so the resulting data was not analyzed in a standalone fashion. However, quotations from the responses are used in this paper and the questionnaire is included at Appendix 3.

After characterizing the body of experience to whatever extent possible, conclusions are drawn based on the available information.

An acronym list, including organization names used in the tables, is provided as Appendix 4.

Table 1. Summary of Case Studies with Cost Detail

Project
Provider
Size
No. Experts
Cost (hrs)
Tool/ Language
Program Phase
Issues Identified

1.
Railroad switching (Liu, Stavridou et al. 1995)
GE, RATP
21 KLOC
Exp team
~200 Khrs
B (manual proofs)
All development phase
Difficulty in communicating with railway signaling experts. It is believed that most of the benefit was due to the specification, not verification.

2.
Medical equipment: Defibrillator (Craigen, Gerhart et al. 1993)
HP
Not available
Not available
Not available
HP-SL
Specification
Consulting available, coding went quickly after the spec was created.

Experts available.

3.
Medical equipment - AIB
HP
~4500 SLOC
4390 SLOC, 55 pgs HP-SL
1500 hrs
HP-SL
Specification, design
Experts available.

No intent to continue formal methods work as part of process.

Excellent productivity during implementation and test.

4.
Trusted computer (Kemmerer 1990)
Unisys
1000 LOC
All
Not available
Ina Jo, FDM
All
Worked as expected. Output was 130 lines of spec, 33 pages of theorem proof output, 270 lines of detailed design and 88 pages of theorem proofs for detailed design.

5.
Autopilot on Space Shuttle (Cheng and Auernheimer 1994)
JPL/ Langley
Not available
2
Not available
PVS
Legacy System
System was successfully reverse engineered and specified.

6.
Fault protection on Cassini, an umanned space vehicle (Lutz and Ampo 1994)
JPL
85 pages of narrative requirements
2
2000 hrs, 12 mos
PVS
Specification
37 issues identified, including 9 inconsistencies between requirement levels and 1 logic error. The team used UML-like diagrams as an intermediate step.

7.
Space Station FDIR (Easterbrook, Lutz et al. 1998) (Easterbrook, Lutz et al. 1996)
NASA
53 Processing steps, 18 pages of narrative
2
320 hrs, 2 mos
PVS
Req, IVV
15 issues identified.

8.
1553 Bus FDIR (Easterbrook, Lutz et al. 1996) (Easterbrook, Lutz et al. 1998)
NASA
15 pages of narrative requirements
1
240 hrs, 4 mos
SCR
Req, IVV
Multiple problems: ambiguities, implied sequencing was detected, several interaction constraints were shown to be impossible to achieve. Lightweight - Only verified "critical" areas.

9.
Power plant control system (Ciapessoni, Crivelli et al. 1999) (Basso, Ciapessoni et al. 1995)
ENEL, Politecnico di Milano
Not available
Not available
Not available
TRIO
All phases
Overall cost of project was 15% less than expected using a traditional approach. The specification phase was increased by 2x and requirement validation was increased by 5x, but the costs of all other phases were decreased significantly.

10.
Ammo storage retrieval (Liu, Stavridou et al. 1995)
MoD, University of London
Not available
Exp. team
Not available
VDM
Only safety-critical parts were subjected to formal methods

11.
CDIS - ATC display system (Hall 1996) (Hall and Pleeger 1995)
Praxis
197 KLOC
All
15.5 Khrs
VDM
All
Productivity: 13 LOC/day, C code. To Test: 11 err/KLOC, normal post release resuts (US) - ~5/KLOC in US.

12.
FlowBus - message handling middleware (Dick and Woods 1997)
Bull - System Software Dev.Unit
3500 LOC C
3 formal methods experts / staff of 12
344 hrs
VDM, B
All phases, only part of the system
Productivity: 10 LOC/hr

LOC number is adjusted to account for automatic code generation - authors claim similar cost to produce with similar scale, traditionally developed projects.

There were significantly fewer defects detected in unit test - improvements of factors of 5 and 9 in comparison to the other in house programs.

13.
Rework of control software for satellites (Puccetti 2000)
CISI-DIFN
~5500 LOC
2
2000 hrs
VDM, IFAD VDM toolkit
All phases
Maintenance effort to upgrade existing 9 KLOC of control software. Used mixed formal/semi-formal methods. Occurred in 1998.

The project took 193 days vs. 300 days originally, with a 90% reduction in test time. Overall advantage is 36%.

Noted that there has been little adoption of formal methods in the company.

Experts in formal methods were used as consultants.

14.
Trusted Gateway (Larsen Peter 1996)
BASE
63/371 LOC
Not available
Not available
VDM-SL
All
Two teams did this project in parallel. They finished at the same time (through test) and with 6% of the cost of each other. The formal methods code was much smaller and more efficient.

15.
Oscilloscope, software framework (Craigen, Gerhart et al. 1993)
Tektronix
200 KLOC
Arch. Spec
Not available
Z
Arch, design
No defined process in place, joint project with Tek R&D Lab.

Met schedule, net cost effect believed to be nuetral.

16.
Rehearsal Schedule Planner (Stavely 2000)
IBM CICS team
1400 LOC (Python)
Not available
Not available
Z
All
No algorithmic faults detected. Judged efficiency in defect detection to be similar to cleanroom approach. Integrated UI and formal methods in Knuth Literate Programming document.

17.
Helicopter sensor/ status display (King, Hammond et al. 2000)
Praxis
27 KLOC Ada

74 KLOC "analysis support" code
All
38 Khrs
Z, CaDiZ
All
Productivity: ~6 LOC/day, Ada Hardware interface problems.

18.
CICS, IBM transaction monitor (Stavely 2000)
IBM, Oxford University
268 KLOC, 37,000 LOC specified and designed, 11,000 LOC specified
Exp team/ consultants
Not available
Z, Fuzz
Specification, some design
Believed to have resulted in 9% cost saving.

Figures 1 through 4 summarize the size spread and the language/tool usage in the formal methods projects from Table 1 and in the Formal Methods Europe (FME) database. They show that (1) formal methods are not typically used on commercial sized projects and (2) there is no clear language of choice for these applications. Clearly, these two conclusions could be biased by my selection of projects to study. In the cases examined, there were few applications of more than 50 KLOC and a proliferation of languages, with Z and VDM (and its tool sets/extensions: VDM++, VDM=SL) predominating.

[image: image1.wmf]17

12

11

Req

Design

IVV

[image: image2.wmf]0

50

100

150

200

250

300

350

Analysis

Specification

Design

Test &

Implementation

Traditional

Formal

Method

Figure 5 shows that most projects that use formal methods use them on the requirements/specification phase of the program. Finally, Figure 6 shows that the use of formal methods tend to be in domains where safety and/or reliability are paramount: medical, financial, defense, etc.

[image: image3.wmf]2

3

4

2

<1000

1000 - 5000

5000-50000

>50000

[image: image4.wmf]9

10

6

2

<1000

SLOC

1000 - 5000

SLOC

5000-50000

SLOC

>50000

SLOC

As mentioned previously, this data may not be representative of the actual uses of formal methods. In order to be considered, cases had to include at least some management performance metrics, such as performance against schedule, LOC, person-loading, etc. The maintenance of such metrics frequently occurs in domain areas where savvy customers and/or inspectors require them: regulated industries such as transportation, defense and medicine. Other sectors may be using formal methods, but since they frequently don’t track management metrics during developments, they weren’t considered for inclusion.

Table 2 summarizes three recent case studies on the use of formal methods. There wasn’t enough information to use for comparison with other programs to include in the table, but the claimed productivity increases are breathtaking. The formal methods community has been admonishing itself to match it's tools to the user domain, and they might be succeeding.

Table 2 Recent Formal Methods Successes

Organization/ Application
Measurement/ Productivity Effect

Motorola

Signalling Software [Jagadeesan, 1998 #92]
With repeated use, an in-house developed, domain specific modeling language and code generator has resulted in "dramatic" reductions in the time to produce code and 30 to 1 reduction in time to repair coding errors.

Aerospatiale Matra

Avionics software (Randimbivololona, Souyris et al. 1999)
A verification assistant tool called Caveat was used during the code and verification phases of an avionics software development. The team assessment was that repeated use of the tool will result in approximately 20% saving in unit test. The authors pointed out that the tool is matched to their application (aeronautical), i.e. there is a verification requirement and they are constrained as to the language constructs they can use.

Nortel & University of Toronto Formal Methods Lab

PBX software, Operation, Administration and Maintenance software (Wong and Chechik 1999)
A tool called Telelogic SDT was used. The work was done by University personnel, familiar with formal methods. The emphasis in the project was generating test cases. Several problems were found with the specification, including one that could have resulted in a system crash. Interesting results include the time to model (11 days, tool only) vs. time to inspect (50 days, normal development process only), the number of test cases produced (Tool: 269, normal dav: 96), time to execute tests (Tool generated tests: 5, normal dev tests: 14), time to develop tests (Tool: 7 days, normal dev: 7 days), number of implementation errors detected (Tool tests: 50, normal tests: 23). Eighteen of the 50 problems discovered by the tool tests were because errors were detected in the specification while modeling the system under test. The lower test time number for the tool generated tests was attributed to the clarity of the specification; the testers didn't have to go back to the designers for more information. Based on these results, the cost to model was 11 days, but it saved 9 days in test, so if inspection time could be decreased by only 2 days, incorporating the tool into the process would offer significant improvement in number of test cases and errors detected at no cost.

These three cases demonstrate that formal methods can work, not only on improving the quality of a product, but in making cost savings - if the problem is right and the organization is prepared.
Discussion

There have been relatively few formal methods applications documented to the level of providing good comparison values. This is understandable, since that information is extremely competition-sensitive. That said, there are a few conclusions that will be drawn by most managers responsible for meeting schedules and budgets:

· Most of the formal methods applications have been relatively small scale.

· Many projects had excruciatingly low productivity rates compared with those expected in a commercial environment, and, in some cases, their defect density was higher than that obtained by using clean room techniques (Hall 1996).

· Almost all of them were executed in consort with an academic or research institution of some type.

· Only one of the industrial partners (SNECMA) claimed that the technology was poised to propagate throughout the company.

· IBM, Daimler Benz, and Bull were the only repeat users of the methods, according to the database, suggesting that companies did not generally have positive results.

· On several of the projects, the formal methods component was halted or cut back due to time or budget concerns (Compact Dynamic Bus Station, ETSS, I/O subsystem, Modular Architecture of Intelligent Networks, System Test Facility).

However, there still may be times to use formal methods. The following is an attempt to help characterize your situation and judge if formal methods are an appropriate tool.

Go - No Go Conditions

One formal methods technologist says (Fokkink 2002):

“In general, having worked on a number of projects where formal methods were applied in industry, my experience is that such applications are almost always troublesome.

1) There is usually no knowledge at all about formal methods at the other side of the table.

2) Often “they” do not see why more or less formal system specification of some kind are useful

3) Nor why simple minded debugging is not always the best way to find flaws in a system. . . .“

In light of that, before considering including formal methods in a project, the following conditions must hold:

You have a really good reason.

A really good reason would be that your customer requires them. This isn't restricted to customers who explicitly require them, such as MoD; you may be in a business that doesn't have a customer base that is sophisticated enough to realize the risks incurred by depending on software. If that's the case, you may decide to apply formal methods because it's the right thing to do. This might be the case with a company purchasing assembly line control or other types of manufacturing software; if there is a personal safety risk to employees, formal methods might be appropriate. Finally, if may be a competitive advantage if you do it first in security-aware sectors such as finance. Figures 4 and 5 show the distribution of applications by sector from Table 1 and the FME database.

Another good reason would be that you expect this software to be around virtually forever. In the case of the power plant control software (Ciapessoni, Crivelli et al. 1999) or CICS (Craigen, Gerhart et al. 1993), the expected life cycle of the software is decades, with continuous maintenance and upgrades. It is in your best interest to lock down every assumption and every corner case on every test because your experts won't be there to tell you what they were thinking in 25 years. In the shorter term, having a fully proven test suite allows software maintenance to be approached with much greater confidence, since the likelihood of introducing detected unintended consequences is much higher. This results in lower design/analysis costs for the maintenance efforts and lower domain knowledge requirements for the maintenance programmers.

The development is internal, or on a shared-risk contractual vehicle.

There are virtually no metrics for estimating cost or schedule for formal methods projects (Craigen and Gerhrt 1995). In the 66 cases studies, only 7 claimed equal or better cost numbers as compared to traditional developments (Larsen Peter 1996; Stavely 2000). Additionally, the case studies are not likely to be representative because they are domain specific, were implemented by various All Star Teams, and the Hawthorne Effect
 is always present. Experienced formal methodologists insist that cost and schedule estimation techniques are unsatisfactory and will remain so until a large body of experience becomes available (Bowen 1995).

Since the cost/schedule impact of formal methods can't be predicted, it seems unwise to volunteer to use them unless you can control the amount you are willing to invest in them. If the proposed use is internal development or some type of contractual vehicle in which the customer shares risk (cost plus whatever), then formal methods can be considered, since the financial risk is either controlled or shared. Interestingly, in one case, the DUST-EXPERT™ system, although the acquirers needed help interpreting the formal system description, the use of formal methods was “important in the acceptability of the proposal” (Clement 2002), meaning that the customer saw enough value to invest in being educated.

If you don't have at least one of the above conditions in place, you might think twice about using formal methods.

You Have Management Buy In

Table 3. Comparison of Time Spent vs Program Phase

Traditional Development

(time in person-days)
Total
Formal Methods Development

(time in person-days)
Total

Analysis
50

55

Specification
25
75
101
156

Design
75
150
22
178

Implementation & Test
150
300
15
193

Total
300

193

Use of formal methods will affect the program schedule; their use might be expected to extend the initial phases of development (analysis, requirements and specification) and compress the design, code and test phases. Table 3 compares the time spent in each phase of development on a development program for a satellite control system and the formal methods development for a rework of that software (Puccetti 2000). Note that at the end of the specification phase, more than twice the hours were expended on the formal methods development as on the traditional development, although by the end of test, the formal methods approach had proven much less expensive.

Changes such as these in the program schedule are of serious concern for two reasons:

1. they alter the costing profile of the program; that is, money is spent at different times in the program than in a traditional development and

2. they change the drop dates of interim deliverables.

If an organization is working with a contract based on a traditional development model, these two factors may combine to make the developing organization's investment significantly higher for formal methods programs. Frequently, milestone payments are based on completion of various program phases, signified by the completion of a deliverable item, or by acceptance of some work product. Since the customer (internal or external) wants his investment to be proportional to the amount of useful "product" he currently holds, the payment schedule is usually back-loaded, so that the payments for requirements analysis and specification are small in comparison to those for design, code and test.

[image: image5.wmf]Space

27%

Power

6%

Telecoms

16%

Finance

11%

Test Equp

6%

Medical

11%

Defence

17%

Transport

6%

Looking at Figure 7, this is an obvious mismatch with the formal methods approach, where work load is shifted toward the beginning of the program. As can be seen, the investment of the developing organization is significantly higher for the formal methods development until
completion of the design phase. The result of this is that the developing organization may find themselves going into debt in the initial phases of a formal methods program, rather than making an initial profit. If management is unaware of this, the program might be red-flagged early, with the "costs of panic" that always accrue to a program that is thought to be in trouble, due to increased reporting requirements.

If You Still Think You Might Do It . . .

If you have a project that cries out for formal verification, and you have management buy in to try (Jagadeesan, Godefroid et al.) (Weil 1998), here are some guidelines for proceeding:

Don't buy, rent.

Most of the studies used expert formal methods teams, and all of them had expert consultants available - in the FME database, 90% of the projects were done either by academic institutions, or in direct cooperation with one. What percentage of your normal developments require that? Unless you think you're going to make a habit of using formal methods, it is difficult to justify training engineers to be gurus (Easterbrook, Lutz et al. 1998) (Jagadeesan, Godefroid et al.) (Dick and Woods 1997). There are two reasons for this. First, you'll have to train more than one engineer, so they can have someone else to bounce ideas off; second, if this is a one-time or few-time effort, like many formal methods projects are (Snook and Harrison 2001), you'll have a sharply limited opportunity to recover your training investment.

The real reason, though, is that to meet a commercial development schedule, you need expertise to quickly analyze the selected problem, identify the appropriate level of rigor and type of formal method to apply, and select the tool to match the problem. There are many method/tool/language combinations that have dedicated adherents, and each has different technical and cultural strengths - just like programming languages. Blindly selecting a language because it has the largest support base (Z) might doom you to failure because you really needed to have an executable model - or something else Z (or whatever you chose) doesn't provide. Alternately, selecting the perfect tool may be a bad choice if the only expert is its author and her graduate student, who both live in time zones far, far away. The formal methods community isn't geared to provide general purpose tools, so you need an expert to select them, as well as to run them.

As always, there are disadvantages to outsourcing. First, your experts may come with baggage; that is, a strong commitment to an existing formal method. Many of the formal methods were developed research settings, and many experts became experts by developing new tools or by applying an academic tool to an industrial problem. As the saying goes "When you have a hammer, everything looks like a nail." The Formal Methods Europe (FME) website (www.fmeurope.org) has a current list of methods and a high level roadmap for the selection process; use this or something like it to inform yourself a little, so you can at least ask questions to ensure that your expert is open to considering multiple alternative solutions.

The major disadvantage of outsourcing is that the formal methods expert will probably not be a domain expert, requiring training about the domain. And since you're not a formal methods expert, you'll need to learn about them to manage your program. Communication between the formal methods experts and the domain experts was cited as a problem in several of the case studies, specifically the HP medical equipment and the railroad switching projects (Craigen and Gerhrt 1995) (Bowen and Stavridou 1993). In both cases, the formal methods team was required to come up with an alternative method of presenting their specification in order to get it properly reviewed. Alternately, several of the cases in Table 3 cite misunderstanding of the domain by their formal methods team as a serious impediment to their progress.

However, Easterbrook et al. (Easterbrook, Lutz et al. 1998) point outs that the process of educating their hired guns resulted in detection and resolution of several requirements problems, as well as exposing areas that lacked clarity in the requirements, both valuable outcomes.

There must be a solid software development process in place.

All but one of the organizations in Table 1 that successfully applied formal methods used them to augment an existing, successful process
. This may be a side effect of the fact that organizations that are interested in formal methods are frequently those already involved in safety or security critical applications and, hence, already have a solid process in place. Formal methods cannot be used to develop software, only to improve your chances of getting good software. For example, in order to generate a formal specification, there has to be some notion of a requirements document to compare it with, and a requirements document is a product of a structured development process. Similarly, some formal methods tools support continuous refinement of design through code generation - but the resulting code has to be tested and its configuration managed.

A part of the problem with the use of formal methods is the difficulty of reviewing the output - even if you get it done, getting people to look at it is difficult. The formal methods community recognizes the problem of specification readability and has begun work to identify the most useful methods of presentation of their data (Zimmerman, Lundqvist et al. 2002).

New tools are being built that might ameliorate this problem. For example, Heitmeyer, et al. (Heitmeyer, Jeffords et al. 1996) describe a tool they built to support SCR, a method that has been in relatively consistent use since 1980 (Heitmeyer, Kirby et al. 1998). The new tool is a consistency checker. Once the specification is made, the tool will check for syntax, type correctness, completeness of variable definitions, initial values, reachability, disjointness, coverage, and lack of circularity. According to Parnas, these items take up an inordinate amount of time when reviewing formal methods outputs - so perhaps the tools are going to be developed to take advantage of the structure that the formal specification offers. This is an issue that you should definitely query your expert about.

The application of formal methods delays the beginning of the coding phase of a program. In light of this, formal methods will probably not be successful in an impatient organization, and patience is usually a characteristic an organization with a mature process (Jagadeesan, Godefroid et al.).

There must be one or more expert consultants available.

As mentioned previously, all the formal methods application programs were accomplished either by teams made up entirely of experts, or had free access to expert consultants. NASA has concluded that, at the least, expert consultants should be available to formal methods programs, and ideally, at least one team member should be an expert (Holloway and Butler 1996). Surveys of participants in software projects that had used formal methods (Pedersen 1997) (Snook and Harrison 2001) also included this as a lesson learned. So, even if you send your people to schools, expect them to need support - be prepared to provide it.

In "Formal Methods: Promises and Problems", the authors coin the phrase "domain-specific formal methods" for their vision of the future (Wing and Clarke 1996), in which a small, sophisticated community has formal methods tools built specifically for their purpose. The authors feel that this is the direction in which formal methods have the best chance of succeeding - where the users are expert and the vocabulary is standardized. This does not appear to have been realized yet, but in domains where formal methods are used relatively frequently, this may become practical.

You need "early adopters"

There must be a community of "early adopters"
 on the program to use their enthusiasm to bridge through the training and initial frustration. Formal methods have to be introduced in the same way as any new technology - and if you don't have someone eager to try the technology and support it when frustration sets in, the introduction won't be successful (Weil 1998). In the published cases, the implementers entered the project with confidence in the effectiveness of formal methods. The ATC customers (Hall 1996) noted that they didn't get the attention they needed from their own superiors because it was so difficult to understand what was being done. I think this is typical; no one has time to learn a new system - unless they're simply really interested. On the Tektronix project, the execution team's "openness to new ideas" was identified as a key factor in the success of their project (Craigen, Gerhart et al. 1993). To be successful, you'll need someone who can provide that outlook and energy to the rest of the team (Butterfield 1997).

Know exactly where you need the extra effort.

Very few of the projects applied formal methods to the entire development process, and even those that did, elected to start analysis several levels of detail down from the top (King, Hammond et al. 2000) in order to avoid combinatorial explosion of proofs (Heitmeyer 1998; Petersen 1998). Another reason to restrict the scope as much as possible is to keep the analysis timely and synchronized with development. NASA has had good success using formal methods on only parts of specifications. Part of the reason they restricted scope was that the source documentation was still changing quickly, and they wanted to minimize the amount of wasted proofs they did. NASA feels that careful selection of targets has allowed them to use formal specification efficiently to serious problems, while not bogging down the development process (Easterbrook and Callahan 1997).

Scalability is another unknown in these developments. Most of the formal methods developments appear to be relatively small, ranging from 1 KLOC to 200 KLOC, but many commercial and bespoke development projects run to millions of lines of code. Even if the formal methods tools and techniques worked superbly on the samples, there is no guarantee that they will work well on a large program; we all know that changes in size can cause changes in kind as well as quantity. With this in mind, risk can be bounded by carefully selecting the right, small portion of your program for formal methods application.

Select an appropriate program phase.

Several of the projects that used formal methods for specification, design and verification noted that the majority of the value came in using formal methods to develop a specification (Hall and Pleeger 1995), (Jones, Till et al. 1998). The projects surveyed provide little evidence of value added by formally proving a program, either manually or with an automated theorem checker. There are probably a couple of reasons for this: the formal methods tools for design don't appear to be as mature as those for specification, and requirements specification is a weak point in many processes. As a result, formal methods might provide the most value-added in the specification phase of the program.

Using this as a guide, formal methods could be appropriate either in new development programs during the requirements specification phase, or in the reverse engineering phase of re-engineering an existing system from its as-built configuration. In either case, the process of formally specifying the system can provide an unambiguous description of system requirements that can ensure the internal consistency of the requirements set and can be used for generating test cases. In the case of a greenfield system, it can be used to expose weaknesses in the natural language specification. In the reverse engineering application, creating a formal specification from the existing code allows the user to compare the as-built with the original specifications and also to verify what the code actually does, while forming a basis for a new requirements specification. It should be realized that the formal methods should be applied after user requirements are relatively firm and the essential requirements are identified - it is difficult to express the concept of "desirable" in these languages (Hall).

If applied after the development is done, formal methods can cost up to 50% of the development cost - which would be the case when using them to verify the as-built configuration (Kemmerer 1990). If the system has been in the field for some time and the actual body of code has lost synchronization with the documentation, this may represent a cost savings. If the alternative is having the maintainers attack the code while operating from bad information and discover the documentation errors via testing, formal methods is definitely worth a look.

“Specification Mining” is a new development that may help with this problem (Ammons, Bodik et al. 2002). This approach assumes that a fielded program is mostly correct and infers the specification based on the behavior of the existing, running code.

There have also been successful pilot projects using code generation tools, in which the code was automatically generated from a formal specification and integrated with manually developed code (Iglesias, Gonzalez-Castano et al. 2001).

You'll probably "lose" your domain experts to the development.

You won't lose them in the sense that they'll leave the company (we hope they're the early adopters!), but you'll lose them as cross-organizational assets. Usually the domain experts who are most valuable to any single project are valuable to multiple projects, and using formal methods even with consultants, will require them to learn enough formal methods to talk to the consultants. This will take more time than normal, intra-organization help does, since it involves, essentially, learning a new language (Jagadeesan, Godefroid et al.).

Select the right languages and/or tools

Tool selection will be a critical decision, which should be based on suitability for your intended use (Hall) (Butterfield 1997) and to match your existing process (Garbett, Parkes et al. 1999). As mentioned above, it's probably best to have expert help making this decision. The applications of formal methods tend to be esoteric, and the contents of the tool suites are very inconsistent, so you may be limited in your selection of tools by your application.
If you aren't driven to a single language or tool by your application, selection should be based on availability of experts and/or training and ease of learning. Further, one project may require multiple notations for different aspects of the program (Hall) (Jackson 1998).

When assessing the formal methods tools, be aware that one of the major self-criticisms of the formal methods community is that they don't seem work on a tool for robustness, reliability, scalability or stability; they always try to extend the power of the tool, rather than making the present version more usable in a production environments (Holloway and Butler 1996), (Hall). This is why access to an expert is so crucial: your team needs to know quickly whether it's them, their theorem, or the tool that's misbehaving. Also, when reading capability lists about these tools, just to give you a point of comparison with mainstream software development environments, LaTex is frequently mentioned as a "support tool" since it is seen to be the only way of printing the notation - this is not a problem with LaTex, but it could come as a rude surprise to someone used to working in an integrated development environment.

"A Specifier's Guide to Formal Methods" (Wing 1990) gives a technical overview of the different tool types, as well as descriptions of their conceptual models. Other overview sources are NASA's Formal methods specification and analysis guidebook for the verification of software and computer systems and, as mentioned previously, the FME website. Frequently the case studies identify their rationale for selecting a tool [(Wong and Chechik 1999), (Randimbivololona, Souyris et al. 1999). Ease of use, match with present development methodology, appropriateness for size of application, capability (specification, code generation, etc.), availability of experts, user base, and availability of training are among the qualities that should be examined in your candidate tool.

If you have an aerospace application for the United States, NASA (and they have some influence with the FAA) appears to favor the use of PVS, based on tool use in NASA sponsored formal methods studies. PVS was developed at SRI under a NASA contract, which should mean that there are experts available in the USA. Also, the PVS tool suite, PVS documentation, examples, technical reports, and other supporting information are all available free of charge on the SRI website, and examples are documented in the NASA guidebook on formal methods (NASA 1997).

ISO standards are in the works for Z and VDM, as well as other methods that weren't used in the case studies reviewed (Bowen and Stavridou 1993). It could be important to use a standard language so that the notation and model will stay consistent across tools and applications, allowing substitution of tools and reuse of specifications. That said, standards change too, so this may be an ephemeral advantage.

Most of the industrial applications of formal methods used Z, which is a powerful motive to continue to use it (Craigen and Gerhrt 1995). Not only is there a standard for it, developers of Z stay in touch with industry via an active newsgroup and mailing list, and there are far more how-to books on Z than on any of the other languages.

Finally, can the tool be qualified? If you're working in an environment that requires hardware qualification and compiler qualification, it seems appropriate that you would want your specification/proof/code generator to be at least as trustworthy (Blackburn and Busser 1998).

A relatively new possibility in this area is the translation of a formal specification from one notation to another, allowing use of the most appropriate tool/notation for the problem or the aspect of the problem that is currently under investigation (Katz 2001). The technical problem with this is, of course, is that the translation or the translation tool needs to formally verified. The management problem is that there are relatively few people competent to help with the matching of problem aspect to formal approach.

There are different levels of application of formal methods

Easterbrook (Easterbrook, Lutz et al. 1998) uses the term "lightweight formal methods" to "indicate that the methods can be used to perform partial analysis on partial specifications, without a commitment to developing and baselining complete, consistent formal specifications." Easterbrook describes the use of lightweight formal methods used selectively on identified problems with the results fed back into the existing process. NASA has used this process successfully in several cases, and a group at Nortel has concluded that selecting the right problem is critical to successful use of formal methods (Wong and Chechik 1999).

Formal methods complement other techniques, but they don't constitute a methodology by themselves.

Formal methods to enhance your present process, they don't replace it (Butterfield 1997) (Garbett, Parkes et al. 1999). During development, formal methods were successfully used with data flow diagrams, entity-relationship diagrams and various object modeling forms, most of them now included in the UML - sequence and class diagrams, for example. The participants stated that the diagrams were useful for identifying system boundaries and providing a starting point when identifying interface relationships. There is ongoing work in formalizing the UML and object oriented modeling techniques (Bruel, Cheng et al. 1998). Andrew Butterfield, who has worked on a number of formal methods applications, says (Butterfield 1997)
"Do not rely on one model alone. Products of sufficient complexity give rise to different views. Checking for cross consistency will usually identify errors in understanding the requirements."

Good advice whether or not one of the models is a formal method.

Many formal methods practitioners and virtually all the users in Table 1, seem to feel that the output of the formal methods tool alone was not sufficient to communicate with either other developers or the customer (Wieringa and Dubois 1997) (Le Charlier and Flener 1998). Since a formal methods specification does not provide an overview of the system (Hall 1996), it is necessary to provide natural language expansions and explanations along with the formal methods product, particularly in the non-functional areas of discussion. As another case in point, the customers in (Hall 1996) and (Craigen and Gerhrt 1995) had difficulty communicating about their system within their own organization, due to the use of formal notation - and if your customer can't explain your program status to her boss, your program is in trouble.

In one of the most interesting developments, Heitmeyer has used domain specific front ends on simulators to allow validation of specifications by domain experts, using an execution of the specification as a driver for a domain specific GUI, combining the advantages of prototyping and formality (Heitmeyer 1998). The IBM team that developed the rehearsal scheduler, also developed a documentation style that embedded user interface into the specification (Stavely 2000). This is no substitute for formally specifying the UI, but it at least consolidates all the available information.

John Rushby said (Rushby 1999)
"Only by adapting to existing "design flows" and by coexisting with traditional tools and methods will our have a chance to be assimilated into the normal state of practice."

There has been a discernable push to identify ways to integrate formal methods into design cycles, provide road maps for incremental introduction of formal methods (Bruel, Cheng et al. 1998), and to identify economical methods of introducing formal methods into organizations (Wieringa and Dubois 1997), so this may become a much more tractable problem over time.

What can you do about estimating the cost of formal methods?

There is little or no history available for the cost and schedule impact of using formal methods - and what history is available is probably not useful to most organizations due to differing levels of in-house expertise and processes, application domains, changes in tool suites, etc. The normal view of costing on formal methods projects is summed up by Koob, et al (Koob, Ullmann et al. 1996) discussing the results of several short pilot programs using a formal methods framework called VSE-Tool:

"Formal development, even using VSE, takes considerable more effort. The result might be a better product but it might also be too late and significantly more expensive than conventionally developed products. The solution to this still has to be worked out."

That said, one of the case studies used parallel development teams on the same task. The cost distribution was slightly different, but the two teams finished in nearly the same amount of time and nearly the same amount of money. And IBM's development of CICS actually resulted in an estimated 9% savings in development costs (Bowen, Hinchley et al. 1995). In a case where an Air Traffic Control (ATC) system was being built, the percent of engineer time spent in each phase was within 4% of the COCOMO prediction (Hall 1996), thus highlighting that formal method use can result in schedules comparable to traditional development schedules. In the development of power plant control software, significant cost savings were achieved in comparison with the estimated cost of doing a traditional development (Ciapessoni, Crivelli et al. 1999). All of these cases were developments where the teams had software processes in place and were already successful at working within a documentation structure.

An additional factor to consider is that there might be long term cost benefits not captured by current metrics. On the ATC system, although the number of defects found during system testing was similar, the number of post-delivery problems found was lower for the portions of the system that had been subjected to formal methods (Hall). Since both types of code passed system test with the same number of defects, this implies that the code developed using the formal methods more closely matched the end user's expectations for characteristics that weren't documented by the requirements specification. This finding is supported by (Snook and Harrison 2001), in which an IBM representative estimated that there is a 40% decrease in post-delivery failures (when compared to their software developed using other methods) on their software developed using formal methods. Formal methods have been useful in verifying specifications, design and code, but they might possibly be useful in validating the system, as well. Since the goal of all documentation and design is to enable us to meet or exceed customer expectations, this might be an extremely significant result.

Along these lines, Rushby suggests the use of model checking to explore users’ mental models of complex systems (Rushby 2002). The problem being addressed occurs in complex, multi-modal systems in which certain actions are restricted to certain modes; or when certain actions are taken, there are different results in different modes - with potentially dangerous results, since many of these systems are flight or weapons control systems. Rushby suggests modeling both the actual system and reasonable mental models of the such a system and using a model-checking program to determine if they are consistent. Although this would only be appropriate where safety was at issue, the user-interface rapid prototypes could be used to develop the users’ mental models, and conflicts between the specified system operation and the users’ understanding of it could be clarified before use, or the specification could be modified to avoid confusion.

The use of formal methods acts to extend the specification and design phases of a program (Snook and Harrison 2001) (Ciapessoni, Crivelli et al. 1999). This time may be made up in code and test, but a larger investment must be made in the initial stages of a program, changing the investment profile of the project. This must be addressed in program planning, status and reviews to keep management confidence that the project is on track, even though the spending profile is unexpected.

Finally, for formally specified and proved systems, the cost of change is daunting. If the investment has been made to formally specify and/or prove a system, to preserve formality, any change has to be inserted with the same level of formality. Further, if the change effects interface properties of the module, the proofs that depend on those have to be reproven and little mention is made of this problem in the literature, aside to note that it exists (McDermid, Galloway et al. 1998), all of which adds up to fewer change proposals and less profit made on upgrades.

Areas for Future Investigation

Invent Heuristics and Standard Metrics for Formal Methods Projects

Organizations that develop software, as well as professional organizations such as SEI, have developed heuristics that describe the expected time/cost relationships among the various program phases. Using these as baselines, managers can identify features of their programs that might cause weighting differences, and use this information to adjust their estimates. The heuristics are based on data collected from previous programs, with the programs characterized by size, domain, schedule, etc.

In order to introduced formal methods programs to the mainstream, data will have to be collected across organizations and domains and analyzed to identify a nominal relationship among program phases. Based on that, reasonable milestone payment allocations can be identified for each phase.

However, a large amount of foundation work must be done in order to collect meaningful data, and metrics must be defined and used consistently. Obvious suggestions for data collection would include hours spent on each program phase for a formal methods program, on formal methods activities in each phase, and hours required for initial and on-going training. Other areas of interest include the level of seniority of the people required to perform the formal methods activities, the proportion of time spent on formal methods activities compared to those normally performed (that is, on a formal methods program, how much of the specification phase was spent writing a plain-English spec and how much was spent in formal specification). The formal methods metrics would be collected in addition to normal metrics, such as requirements volatility, bugs, etc.

Compare the Life Cycle Costs between "Standard" and Formal Methods Development Programs

There is evidence to suggest that formal methods development programs can deliver products within the same end date as those of traditional developments. However, most of the cost of software is in maintenance, so a major concern should be life cycle costs. We can speculate that the cost of "bug-fixing" will decrease, since we hope there are fewer bugs. Alternatively, introducing change to the system might be much more expensive since, to preserve its integrity, the formal methods products from all program phases will have to be updated.

Yet another perspective is that software can have a longer life if the investment is made in formality: we have all seen software "broken" during maintenance due to misunderstanding of its intended use and design. Large custom software packages are particularly prone to this since they tend to have lifetimes longer than their original developers' careers. If use of formal specifications could significantly defer the necessity of replacing a large software support system, with its attendant training and logistics costs, that could be worth serious investment.

Impact of Formal Methods Use on Post-Delivery Failure Rates

One of the studies, (Snook and Harrison 2001), noted that post-delivery failures were decreased on a formal methods program. Post-delivery failures are those that are not detected during unit or system test, so they might be problems in areas that were unspecified or were thought to be of little concern. This a common problem when developing a system for a new purpose; neither the developer or the customer can visualize all the consequences of the use of the new system, so sometimes the wrong things are emphasized or ignored. If formal methods can be shown to help stretch the imaginations of the users and developers during analysis, this might be a huge step forward for software development.

Contributions of this Paper

This paper is intended to inform software and systems managers about some of the management issues in developing systems using formal methods. The paper provides the groundwork to develop a business rationale for a decision as to whether to use formal methods or not, guidance in selecting a target for a formal methods development, a summary view of some projects that have used formal methods and a discussion of business concerns that will arise during such a development.

Use of formal methods in industry is still in the investigation stage and that must be recognized by any manager using them: the tools are not mature and a critical mass of users has not been created, much less an audience of informed consumers. As a result, education and resource management (tools and people) must have relatively larger allocations than in a normal development.

Formal methods appear to be most useful in the specification of systems, either during development or when re-specifying during a reverse engineering effort. However, the formal methods use should be deferred until there is a firm, intuitive understanding of the product and the user interface - the methods are designed to root out ambiguity, so they don’t do well modeling at “should” or “might” statements.

Experts in the use of formal methods are essential on any effort; learning by doing is effective, but only when guidance is ultimately available. If experts aren’t available, your people will get frustrated and your budget will get burned.

Probably most important, formal methods are a tool to be used in an existing software process. If the organizational or project culture doesn’t embrace a disciplined approach to software development, it is very unlikely that formal methods will be successful.

The types of systems where formal methods appear to have the most success are in safety critical applications, such as large scale power management or flight and mission control systems. It is suspected that organizations that perform these types of tasks have the necessary supporting culture in place and have a requirement to prove the reliability of their products, a constraint that few other development teams labor under.

With all the warnings in place, it must be said that many factors are pushing the industry toward the use of formal methods: tools are getting more robust, the community is working toward making their output more accessible, governments and standards bodies are recognizing the value of formal methods, and systems are getting unimaginably complex. As one practitioner said (Fokkink 2002)
“. . . formal methods will be fitted into the design process of a large range of systems in the not too distant future. It is inevitable, the way these systems are being built is neither cost effective or robust. But it will take a long road of educating system engineers, developing formal methods to a higher level, and making them more user friendly.”

Appendix 1 Useful Web Sites

http://eis.jpl.nasa.gov/quality/Formal_Methods

http://atb-www.larc.nasa.gov/Guidebooks/

 http://atb-www.larc.nasa.gov/formal methods

http://techreports.larc.nasa.gov/ltrs/ltrs.html

http://techreports.larc.nasa.gov/OGI-BIN/NTRS http://www.cordis.lu/esprit/src/results/pages/
http://archive.comlab.ox.ac.uk/formal-methods.html
http://archive.comlab.ox.ac.uk/formal-methods/repositories.html

http://www.esi.es/Vasie

http://www.fmeurope.org

Appendix 2 Table 1 Detailed Data

There is a table showing more detailed data for each entry in Table 1. The tables are arranged in alphabetical order by the name of the project.

1553 Bus FDIR

Article
"Experiences Using Formal Methods for Requirements Modeling” (Easterbrook, Lutz et al. 1996)

Environmental background
This program applied formal methods to the detailed FDIR requirements for the 1553 communications bus on the space station.

Application domain
Space Station, communications bus protocols; safety critical

Executing organization
NASA

Application size, total
Not Stated

Application size, amount subjected to formal methods
15 pages of narrative requirements

Application phase of development
Detailed requirements

Availability of experts
Performed by expert

Cost
Approximately 240 hours over 4 months, work performed by one person

Effect of formal methods on productivity
Not applicable

Method of adoption by engineers
Not applicable

Formal methods tool used
SCR, PROMELA, SPIN

Level of formal methods used
specification verification, static and dynamic

Outcome
Multiple minor problems were identified. Ambiguities significant enough to cause design errors were identified in the narrative requirements. One significant requirement was added. Implied sequencing instructions were made concrete. Several timing/interaction constraints in the narrative requirements document were shown to be impossible to achieve.

Other factors/considerations
The most time intensive part of the process was translating the narrative to the SCR tool (state tables). After the formalization, it took very little extra time to run the static and dynamic property checking. Although requirements errors were found in the requirements translation process, the errors found by the property checking were probably those that would have been most costly to repair later.

This team also restricted their areas of interest to those requirements they considered critical, since the document was in a state of flux. The team felt that their success in finding anomalies, even though they didn't check the entire document, demonstrates that "lite weight" formal methods are legitimate.

Ammo Storage Retrieval

Article
"The practice of formal methods in safety critical systems" (Liu, Stavridou et al. 1995)

Environmental background
This project was to design an ammunition storage and retrieval center.

Application domain
Ammunition Control System

Executing organization
Royal Holloway - University of London, working for UK MoD

Application size, total
Not stated

Application size, amount subjected to formal methods
Not stated

Application phase of development
Requirements

Availability of experts
Expert team

Cost
Not stated

Effect of formal methods on productivity
Not stated

Method of adoption by engineers
Not applicable

Formal methods tool used
VDM

Level of formal methods used
Specification

Outcome
The team successfully specified the control system and verified some part of the specification. In addition, the specification was used to generate an early prototype. Formality was restricted to the safety-critical portions of the system and the application of formal methods was still useful.

Other factors/considerations
Not applicable

Autopilot on Space Shuttle

Article
"Applying Formal Methods and Object-Oriented Analysis to Existing Flight Software" (Cheng and Auernheimer 1994)

Application domain
Space shuttle digital autopilot software, safety critical.

Executing organization
JPL and Langley Research Center (NASA)

Application size, total
Not stated

Application size, amount subjected to formal methods
Not stated

Application phase of development
Legacy software, maintenance

Availability of experts
Experts performed task

Cost
Not stated

Effect of formal methods on productivity
Not applicable

Method of adoption by engineers
Not applicable

Formal methods tool used
PVS

Level of formal methods used
Specification

Outcome
The module was successfully reverse engineered and the requirements captured in a set of object diagrams and a formal model.

Other factors/considerations
The actual code studied was the Phase Plane control system, which controls shuttle attitude. It was selected for study because of "its difficult to understand requirements and potential for critical change requests. Although the Phase Plane module has worked correctly in thousands of hours of use . . . its specific properties remains (sic) obscure (at least to the requirments analyst and software developers." (Cheng and Auernheimer 1994)
This team also used object modeling techniques as an intermediate step in formally modeling the system

ATC Display System

Article
"Using formal methods to develop an ATC information system" (Hall 1996)

Application domain
Air Traffic Control display subsystem; shows controllers arriving and departing flights, weather, airport conditions.

Executing organization
Praxis Critical Systems

Application size, total
197 KLOC, C code

Application size, amount subjected to formal methods
All

Application phase of development
Specification, design verification

Availability of experts
Praxis specializes in safety critical application of formal methods, and Anthony Hall, the principal on this contract, is a well known formal methods practitionerin..

Cost
7.75 man years

Effect of formal methods on productivity
13 LOC/day, the author contends that this is similar to that when using a structured development process.

Method of adoption by engineers
Not applicable

Formal methods tool used
VDM, VVSL, CSP

Level of formal methods used
specification, verification

Outcome
The project was successful. During TI, the testers were finding about 11 errors/1000 LOC, and 150 faults were identified in the system's first 20 months of operation.

Other factors/considerations
VDM was used in conjunction with context diagrams to show system boundaries. The team noted the difficulty of using formal methods during the design phases. Specifically, it was difficult to capture all of the design using any one tool.

CICS, IBM Transaction Monitor

Article
"Integrating Z and Cleanroom " (Stavely 2000)

Application domain
CICS, transaction monitor; security-critical

Executing organization
IBM and Oxford University

Application size, total
268,000 LOC

Application size, amount subjected to formal methods
37,000 LOC specified and designed using Z, 11,000 LOC partially specified in Z.

Application phase of development
Requirements, design

Availability of experts
Expert team

Cost
Not stated

Effect of formal methods on productivity
Estimated 9% reduction in overall program cost

Method of adoption by engineers
Expert consultants

Formal methods language/ tool used
Z language, Fuzz tool

Level of formal methods used
Specification

Outcome
9% cost reduction, IBM and Oxford received the Queen's Award for Technological Achievement

Fault Protection on Cassini, an unmanned space vehicle

Article
"Experience report using formal methods for requirements analysis of critical spacecraft software" (Lutz and Ampo 1994)

Environmental background
This program applied formal methods to the system level fault protection software for Cassini, an unmanned space vehicle. The project applied formal methods to the fault protection management software and the software that puts the vehicle into the safe state.

Application domain
Cassini spacecraft fault protection software, safety critical

Executing organization
JPL under NASA

Application size, total
Not Stated

Application size, amount subjected to formal methods
85 pages of narrative requirements

Application phase of development
Detailed requirements

Availability of experts
Performed by experts

Cost
approximately 2000 hours over 12 months, work performed by two persons

Effect of formal methods on productivity
n/a

Method of adoption by engineers
Although nominal experts were used, it was noted that a significant amount of time was spent learning the PVS theorem prover.

Formal methods language/tool used
PVS

Level of formal methods used
Specification verification, static only

Outcome
Thirty-seven issues were identified. There were eleven undocumented assumptions - all were true, but some were significant enough to merit documentation. There were ten cases of unspecified behavior for boundary cases or unexpected inputs - most of these were very unlikely, but required expert opinion to determine which could, in fact, occur. There were nine inconsistencies between requirements at different levels. There were six instances of imprecise terminology. One logic error was found.

Other factors/considerations
The team translated the requirements into object, state and dataflow diagrams (OMT) as a first step to aid in the translation of the requirements to the PVS model. It was felt that the diagrams were useful in providing problem boundaries and different views of the requirement space. Since the requirements document was changing while the analysis was being performed, time was spent keeping the formal model synchronized with the narrative document.

FlowBus - message handling middleware

Article
"Lessons learned from rigorous system software development" (Dick and Woods 1997)

Environmental background
The FlowBus is a Bull middleware product that provides "distributed, multi-platform, inter-application message handling services." The FlowBus queues messages and routes them according to type and content. The application was divided into an interface section and an "engine" section, which actually performs the queue management. Formal methods were applied to the engine software.

Application domain
Application integration software

Executing organization
Bull System Software Development Unit

Application size, total
3500 SLOC

Application size, amount subjected to formal methods
3500 SLOC

Application phase of development
Requirements specification (VDM-SL) and design (B) and code generation.

Availability of experts
Experts available, engineers had some prior experience with VDM-SL.

Cost
344 hrs

Effect of formal methods on productivity
Project had ~10 LOC/hr productivity with 3 faults in unit test. Another similar project using structured methods achieved ~6 LOC/hr with 27 faults in unit test.

Productivity figures do not include training or technology transition time.

Method of adoption by engineers
Twelve engineers were in the group developing the FlowBus, three were involved in the formal methods application. Two of the three had former formal methods experience.

Formal methods language/tool used
VDM-SL, B method. VDM Through Pictures and B-Core. Selected after discussion with experts and organized selection process.

Level of formal methods used
Specification, design

Outcome
Judged to be successful. Cost was comparable to similar, non-formal methods developments, many fewer failures in unit test.

Concerned about scalability of tools and approach.

Other factors/considerations
Existing process in place, estimated to be near CMM Level 3. Formal methods approach was integrable with existing process.

No previous use of formal methods by the organization.

Proof was used to build confidence, not to completely proved correctness.

Code generated was not robust; assumes that it will be interfaced with other machine generated code, not sophisticated in language (ANSI C), judged to be less maintainable than hand code. Bull "wrapped" their code in an interface layer to avoid recoding.

Helicopter Sensor/ Status Display

Article
"Is Proof More Cost-Effective than Testing?" (King, Hammond et al. 2000)

Application domain
Military, helicopter sensor/status display

Executing organization
Praxis Critical Systems

Application size, total
27,000

Application size, amount subjected to formal methods
27,000

Application phase of development
Requirements, design

Availability of experts
All were expert

Cost
19 man years

Effect of formal methods on productivity
Not stated, but calculated at about 0.75 LOC/hr - about one third of the productivity Praxis achieved on the ATC application discussed in (Hall 1996)

Method of adoption by engineers
Not applicable

Formal methods tool/language used
Z, CADiZ tool

Outcome
System worked satisfactorily. Problems were encountered with the interface with the hardware.

Other factors/considerations
Not applicable

Medical Equipment - Defibrillator

Article
"An International Survey of Industrial Applications of Formal Methods" (Craigen, Gerhart et al. 1993)

Application domain
Medical instruments control system - defibrillator

Executing organization
Hewlett-Packard, McMinnville and HP, Bristol

Application size, total
Not stated

Application size, amount subjected to formal methods
Not stated

Application phase of development
Requirements

Availability of experts
1 week course for development engineers, extensive consulting with Bristol

Cost
Three weeks to specify

Effect of formal methods on productivity
Not stated

 Method of adoption by engineers
Not stated

Formal methods tool used
HP-SL - similar to VDM

Level of formal methods used
Specification

Outcome
Defect free code during test

Specification uncovered flaws - unexpected in community

Other factors/considerations
HP concerned about FDA regulation of software

Medical Equipment - AIB

Article
"An International survey of industrial applications of formal methods" (Craigen, Gerhart et al. 1993)

Application domain
Medical equipment - AIB - Analytic Information Base: real time database for collection of data from medical devices

Executing organization
Hewlett-Packard, Waltham and HP, Bristol

Application size, total
~4500 SLOC

Application size, amount subjected to formal methods
4390 SLOC, 55 pages of HP-SL, 1290 lines of design and spec

Application phase of development
Requirements and design

Availability of experts
Expert consultants available (HP Bristol)

Cost
1500 hrs total

Effect of formal methods on productivity
Not stated

 Method of adoption by engineers
HP Bristol had developed HP-SL, and performed significant amounts of the work.

Formal methods tool used
HP-SL - similar to VDM

Level of formal methods used
Specification and design

Outcome
No errors were found in the code resulting from the formal methods specification

Other factors/considerations
Low priority at production facility (Waltham), used Bristol engineers to accomplish task due to interest in formal methods pilots.

Formal notation was not popular with engineers, difficult to find domain experts who understood formal specifications

Waltham does not expect to adopt formal methods into their process.

Perceived value is low due to high learning costs.

Coding was simpler than had been anticipated - 150 SLOC/day during implementation

Process in place

Oscilloscope, software framework

Article
"An International survey of industrial applications of formal methods" (Craigen, Gerhart et al. 1993)

Environmental background
This was an effort to design a reusable software framework for oscilloscopes. It was a joint effort between Tektronix R&D arm and their Test and Measurement business group.

Application domain
Test instrumentation architecture, commercial use.

Executing organization
Tektronix

Application size, total
200 KLOC

Application size, amount subjected to formal methods
30 pages of Z describing architecture

Application phase of development
Architecture

Availability of experts
Performed by team in place with expert consultants from the labs

Cost
approximately 320 hours over 2 calendar months, work performed by two people

Effect of formal methods on productivity
Product met schedule

Method of adoption by engineers
Introduced by Tektronix Labs personnel, business area engineers were trained.

Formal methods tool used
Z

Level of formal methods used
Not stated

Outcome
Met schedule

Success/failure as assessed by participants
Formal method was useful as communication medium

Other factors/considerations
Formal methods used did not continue

Power Plant Control System

Article
"Experimenting a logic-based approach to the specification and design of the control system of a pondage power plant. in Workshop in Industrial Application of Formal Methods" (Basso, Ciapessoni et al. 1995)

Environmental background
This is one of several joint ventures between industrial and an academic group that have been ongoing for ~10 years. The first stage of the coop was to build a specification language embedded in a framework of tools to apply formal methods, called TRIO. This was used in this development.

The system is a power plant, consisting of a reservoir, an auxiliary tank and a power station. The software is for the control system.

Application domain
Power plant control

Executing organization
ENEL (the Italian Energy Board), Politecnico de Milano

Application size, total
Not stated

Application size, amount subjected to formal methods
Not stated

Application phase of development
Requirements specification and verification.

Availability of experts
Experts available, and extensive training provided

Cost
Design/code/test - 800 hrs, based on formal spec.

Effect of formal methods on productivity
Overall development judged to be 15% less than that estimated for a traditional development.

Method of adoption by engineers
Structured seminars for ENEL engineers

Formal methods tool used
TRIO

Level of formal methods used
Specification

Outcome
Project completed

Success/failure as assessed by participants
Judged to be successful

Other factors/considerations
Formal specification does not include some non-functional requirements, such as temperature range, etc.

The only part of the project that did not meet its goals (test plan production) was the only part of the process not covered in training.

Railway Switching

Article
"The practice of formal methods in safety critical systems" (Liu, Stavridou et al. 1995)

Application domain
Railway switching, safety critical. The goal was to increase the carrying capacity of the system by increasing track use efficiency.

Executing organization
General Electric under contract to RATP (the Paris, France transportation authority)

Application size, total
21,000 LOC, Modula-2

Application size, amount subjected to formal methods
12,500 LOC

Application phase of development
Requirements, design, implementation

Availability of experts
Expert team

Cost
100 man years (200,000 man-hrs)

Effect of formal methods on productivity
Not stated

Method of adoption by engineers
Not stated

Formal methods tool used
Proofs done manually in B.

Level of formal methods used
Specification and manual proof.

Outcome
It is believed that most benefit came from the creation and use of the formal specification, as opposed to the verification of the code.

Other factors/considerations
Communication between the formal methods experts and the signaling experts was very difficult due to the formal notation of the specification.

Rehearsal Planner

Article
"Integrating Z and Cleanroom" (Stavely 2000)

Environmental Background
The team that did this was part of the CICS group. Their purpose was to investigate the integration of formal specification and cleanroom process. The same team had made an earlier attempt at integrating formal methods and cleanroom which they considered a failure, due to being unable to apply cleanroom processes effectively. The second effort was different because as soon as the specification was created, it was translated to cleanroom-style specifications, and then followed the normal development path.

Application domain
Rehearsal scheduler's assistant

Executing organization
IBM and Oxford University

Application size, total
1409 Python LOC (estimated to be equivalent to 7500 lines of Java code).

Application size, amount subjected to formal methods
All, 1409 LOC

Application phase of development
Requirements, design, implementation

Availability of experts
Expert team

Cost
Not stated

Effect of formal methods on productivity
Not applicable

Method of adoption by engineers
Not applicable

Formal methods tool used
Z

Level of formal methods used
Specification

Outcome
42 page specification, 1409 Python LOC. No algorithmic flaws or requirements defects were coded.

Other factors/considerations
The defect density at test was actually worse than that normally expected from a cleanroom development. However, although cleanroom style inspections were done, due to personnel shortages, they were only one with one person rather than the three usually required. As a result, the team concluded that the specification and verification process results in similar outcomes to a cleanroom process.

Rework of control software for satellites

Article
"Improving the Software Evolution Process Using Mixed Specification Techniques" (Puccetti 2000)

Environmental background
The goal of this project was to prove the utility of a "hybrid" approach of formal methods and semi-formal methods/processes.

The target application was the "Messages Programming Component (MPC)" of the Payload Management Center for a component of the SPOT4 control software. The software was reworked.

Application domain
Satellite control, software maintenance

Executing organization
CS-SI

Application size, total
34 KSLOC C++

Application size, amount subjected to formal methods
34 KSLOC

Application phase of development
Requirements for upgrade

Availability of experts
Internal experts, IFAD experts on tool

Cost
~1550 man-hrs. Original cost: 2500 man-hrs

Effect of formal methods on productivity
The original application size was 9 KSLOC, while the new, machine generated code is 34 KLOC. However, the 34 KLOC was generated by only ~5500 LOC of VDM and C, so there was actually ~35% less code written.

Method of adoption by engineers
Formal training

Formal methods tool used
VDM, IFAD VDM-SL

Level of formal methods used
Requirements specification through code generation

Outcome
Successful

Success/failure as assessed by participants
Judged to be successful, estimate 36% cost savings overall. Also, the efficiency has interested new business partners in formal/semi-formal methods use.

Other factors/considerations
FKRM methodology - combines VDM and K.O.D knowledge acquisition method, developed in-house.

The program took twice as long as the original program in specification, but got through implementation and testing in 10% of the time (15 days vs. 150 days).

Space Station FDIR

Article
"Experiences Using Formal Methods for Requirements Modeling," (Craigen, Gerhart et al. 1993)

Environmental background
This program was aimed at inserting more rigor in the requirements engineering process for the Space Station Fault Detection, Isolation and Recovery (FDIR) system. The FDIR system, since it is used on a manned vehicle, is particularly complex. First, "recovery" from faults means that the vehicle has to continue to provide a safe environment for its passengers while remaining capable of receiving instructions from Earth and returning to Earth. Second, since the concern is so pervasive, FDIR touches many of the onboard computers. In this study, formal methods were applied to flow charts of an FDIR process and the narrative FDIR requirements.

Application domain
Space Station; safety critical

Executing organization
NASA

Application size, total
Not Stated

Application size, amount subjected to formal methods
53 processing steps in charts, 18 pages of narrative requirements

Application phase of development
Requirements

Availability of experts
Performed by expert team

Cost
approximately 320 hours over 2 calendar months, work performed by two people

Effect of formal methods on productivity
Not applicable

Method of adoption by engineers
Not applicable

Formal methods tool used
PVS

Level of formal methods used
specification with proof of claims against the formal specification, i.e. "if a failure occurs, it will always be recovered at some domain level."

Outcome
15 issues documented and passed back to developers, of which 3 were considered to be major.

Success/failure as assessed by participants
Judged to be a cost effective extension of the IVV method. The providers of the requirements document were pleased with the input, but also wanted to know if the FDIR system would work as designed, something not in the scope of formal methods.

Other factors/considerations
There was no repeatable software process in place at Tektronix at that time. The formal documentation has been abandoned in favor of code. Three years later, no other formal methods application had been done.

Trusted Computer

Article
"Integrating formal methods into the development process" (Kemmerer 1990)

Application domain
Trusted computing; transferring data between computers at different security levels.

Executing organization
Unisys

Application size, total
1000 LOC

Application size, amount subjected to formal methods
All

Application phase of development
Throughout development, code generated from verified detailed design

Availability of experts
3 design team members had extensive formal methods experience

Cost
Not stated

Effect of formal methods on productivity
 Not stated

Method of adoption by engineers
n/a

Formal methods/ tool used
Language - Ina Jo, Tool -FDM

Level of formal methods used
All phases

Outcome
The system worked as expected and can be run under several operating systems.

Other factors/considerations
The article noted that the FDM tool suite was not production quality. Also, the documentation produced (for 1000 LOC) was 130 lines of specification, 33 pages of theorem proof output, 270 lines of detailed design and 88 pages of theorem proofs.

Trusted Gateway

Article
"Lessons Learned from Applying Formal Specification in Industry" (Larsen Peter 1996)

Environmental background
A product was developed from scratch by two completely independent teams, running in parallel, without feedback to each other. The intent of the study was that the only difference between the two teams be the potential for employing formal specifications. One team used the normal British Aerospace process with CASE tools, the other followed the same process and used the same tools, but could use formal specification where they thought it appropriate. The requirements engineer elected to produce a formal specification.

Application domain
Trusted gateway, security critical

Application size, total
The formal methods team produced 63 LOC, the conventional team 371 LOC.

Application size, amount subjected to formal methods
All, in formal methods path

Executing organization
British Aerospace

Application phases of development
requirements, design, implementation and test

Availability of experts
Expert consultants were available

Cost
For the entire project, the conventional methods team cost about 6 percent more than the formal methods team. However, the formal methods team costs were greater during the requirements and design phases of the programs. Six percent is probably not a meaningful difference.

Effect of formal methods on productivity
None, if judged by cost or schedule or fulfillment of requirements. If judged by SLOC output, the normal development team was five times more productive.

Method of adoption by engineers
One week of training to cover both formal specification and the VDM-SL tool. All of the formal methods team were sent to the same training. After the fact, it was concluded that the design engineers would have benefited from additional one or two day courses in functional refinement of specifications.

Formal methods tool used
VDM-SL

Level of formal methods used
All

Outcome
Both approaches were judged to be successful. The size disparity between the two implementations was due to a single requirements oversight by the conventional team. Since the condition wasn't detected until test, the solution had to be hacked into the existing design, requiring significantly more LOC than if it had been included in the original design.

During requirements, the formal methods team asked 60 questions and the conventional team asked 40. In addition to asking more questions, the formal methods team asked a higher percentage of questions about exceptions and data types/structures; while the conventional team asked more questions about design constraints and system behavior

Other factors/considerations
 The engineers felt that a formal methods tool (as opposed to using a language manually) was necessary in order to test the specifications as they were created. This was felt to be particularly true initially, when the engineers were unfamiliar with the discipline.

Appendix 3 Questionnaire

Each questionnaire included a cover letter referring to the specific project addressed, but all received the same questionnaire.

1. When you started using formal methods, did your organization have some sort of documented process in place?

2. What language was the application developed in?

3. How was the use of formal methods initially justified? (Safety critical, mission critical, investigative, ubiquitousness, etc.)

4. What formal methods tools/environments were used?

5. What formal methods languages were used?

6. What was the total size (in lines of code, function points, etc) of the delivered application?

7. Of that total, how much was formally specified? (If it's more appropriate, I would be happy with information such as "153 narrative requirements were formalized" or something like that.)

8. Of that total, how much was formally verified?

9. What effect did the use of formal methods have on overall project coding productivity? (lines of code per day over the life of the effort - formal methods may have cost in the beginning, but reduced time in test would make up for it).

10. If the tool suite you used had code generation capability, did you use it? If so, what was your sense of the "goodness" of the generated code as compared to hand generated code?

11. Was the program (1) a new start, (2) a follow-on to an existing program, or (3) a replacement for an existing program?

12. Approximate program start date:

13. Approximate program end date:

14. What program phases were formal methods applied in (requirements analysis, architecture, design, test, maintenance)?

15. What was the total technical team size on the program?

16. How many people actually performed the formal methods work?

17. Was the formal methods work done primarily by consultants or by employees?

18. Did the program team work with any formal methods "think tank", such as a university formal methods lab?

19. Did you send any employees for training in formal methods? If so, for how long?

20. Were formal methods experts always available to the team?

21. Was the amount of time ultimately used for the formal methods part of the project more or less or about what you had originally estimated that it would take?

22. In your opinion, were the domain experts comfortable with the formal methods notation?

23. How many hours or years did the total program take? (I'd like to know person-years, but if you only know calendar time and an approximate loading, I can use that.)

24. How many hours or years did the formal methods portion of the effort take?

25. Did your customers/acquirers learn enough about the process to be comfortable with it?

26. Could you use the output from the formal methods process to document the project or was it necessary to augment with traditional documentation? (My question here is whether any of the formal methods outputs were used as deliverables, or whether they all had to be recast into something familiar.)

27. How did you set up your initial schedule? (Was it the same as for program that didn't use formal methods? Did you extend the requirments phase by 15% and cut testing by 10%? etc.)

28. How close to your predicted schedule were you? Or, were you as close to your predicted schedule as traditional developments are in your organization?

29. If the system has been fielded, have you compared the number of validation-type customer complaints with those received on other systems? In other words, are there more or less complaints about things that meet the specification, but aren't what the customer expected?

30. What do you consider to be the single major advantage of using formal methods?

31. What do you consider to be the single worst thing about using formal methods?

32. Is there continuing formal methods work in your organization?

33. Given another opportunity, what would you do differently in applying formal methods?

34. What company and project name should be used when referring to the work you have described? If you do not wish to have your company/project name used, I'll use the information without attribution.

Appendix 4 Glossary/Acronyms

AMN
Abstract Machine Notation

ATC
Air Traffic Control

BASE
British Aerospace Systems and Equipment

CADP
Caesar/Aldebaran Development Package

CCS
Calculus of Communicating Systems

CENELEC
European Committee for Electrotechnical Standardization

CIDS
Cabin Intercommunications Systems

CMM
Capability Maturity Model

CWI
National Research Institute for Mathematics and Computer Science in the Netherlands.

DST
Deutsche System-Technik GmbH

ESA
European Space Agency

ESA
European Space Agency

ETSS
Enhance Transport Service Specification

FAA
Federal Aviation Agency

FDIR
Fault Detection, Isolation and Recovery system on the Space Shuttle

FDM
Formal Development Method, a formal methods tool suite

FME
Formal Methods Europe

GSM
 Global System for Mobile Communications

GUI
Graphical User Interface

IFAD
Institute of Applied Computer Science

INRIA
French National Institute for Research in Computer Science and Control

ISO
International Organization for Standardization

ITSEC
Information Technology Security Evaluation and Certification

IVV
Independent Validation and Verification. A function provided by a team that audits another team's work and reports to their mutual customer. This is usually only done on large, safety critical government programs..

JPL
Jet Propulsion Laboratory

KLOC
1000 lines of code

LOC
lines of code

MALPAS
MALvern Program Analysis Suite

MoD
Ministry of Defense

MSC
Message Sequence Charts, describes sequence of exchanges between SDL entities

MSFOL
Many Sorted First Order Logic

NASA
National Aeronautics and Space Administration

NATS
National Air Traffic Services

NATS
National Air Traffic Services UK

OMT
object modeling techniques

ONERA
The French national aerospace research organization

PIE
Process Improvement Experiment

PraCoSy
People's Republic of China Railway Computing System

PVS
Prototype Verification System. A formal methods tool suite built by SRI for NASA. The suite includes a formal specification language, theorem checkers, and other code verification facilities. The PVS code is available via ftp at the SRI web site.

SDL
Specification and Design Language

SEI
Software Engineering Institute

SLOC
Source lines of code

SVE
System Verification Environment

T A Group
Provider of formal methods tool, MALPAS

VDM
Vienna Development Model

VDM- SL
Vienna Development Model Specification Languag

Bibliography

(1999). 1999 Survey of High Maturity Organizations, Software Engineering Institute.

Alagar, V. and Z. Xi (2001). A Rigorous Approach to Modeling and Analyzing E-Commerce Applications. FME 2001, Springer-Verlag.

Ammons, G., R. Bodik, et al. (2002). Mining Specifications. POPL '02, Portland, Oregon, ACM.

Basso, M., E. Ciapessoni, et al. (1995). Experimenting a logic-based approach to the specification and design of the control system of a pondage power plant. Workshop in Industrial Application of Formal Methods, Seattle, Wa, USA.

Blackburn, M. R. and R. D. Busser (1998). Requirements for industrial-strength formal methods tools. Workshop on industrial strength formal specfication techniques.

Bowen, J. and V. Stavridou (1993). "Safety-critical systems, formal methods and standards." Software engineering journal: 189-209.

Bowen, J. and V. Stavridou (1997). "The industrial take-up of formal methods in safety-critical and other areas: a perspective."

Bowen, J. P. (1993). Formal methods in safety-critical standards. 1993 Software Engineering Standards Symposium, IEEE Computer Society Press.

Bowen, J. P. (1995). "Ten commandments of formal methods." IEEE Computer 28(4): 56-63.

Bowen, J. P., M. G. Hinchley, et al. (1995). "Seven more myths of formal methods." IEEE Software 12(4): - 34-41.

Bowen, J. P. H., M.G. (1997). The use of industrial-strength formal methods. Twenty-First Annual International Computer Software and Applications Conference, Washington, DC, USA, IEEE Comput. Soc.

Bruel, J.-M., B. Cheng, et al. (1998). Integrating formal and informal specfication techniques. Why? How? Workshop on industrial-strength formal techniques.

Butler, R., J. Caldwell, et al. (1995). NASA Langley's research and technology-transfer program in formal methods. COMPASS 95.

Butterfield, A. (1997). Introducing formal methods to existing processes. IEE Colloquium on Industrial Use of Formal Methods, London, UK, IEE.

Cheng, B. and B. Auernheimer (1994). Applying formal methods and object oriented analysis to existing space shuttle software, Michigan State University/ JPL.

Ciapessoni, E., E. Crivelli, et al. (1999). "From formal models to formally based methods: an industrial experience." ACM Transactions on Software Engineering and Methodology 8(1): 79-113.

Clement, D. T. (2002). RE_Dust Expert. D. Stidolph.

Craigen, D. (1999). Formal Methods Adoption: What's Working, What's Note. SPIN '99, Springer-Verlag.

Craigen, D., S. Gerhart, et al. (1993). An International survey of industrial applications of formal methods, US Dept of Commerce.

Craigen, D. and S. Gerhrt (1995). "Formal methods reality check: Industrial Usage." IEEE transactions on software engineering 21(2): 90-98.

Dick, J. and E. Woods (1997). "Lessons learned from rigorous system software development." Information and Software Technology 39(8): 551-60.

Duce, D., D. Duke, et al. (1999). "The changing face of standardization: a place for formal methods." Formal aspects of computing(11): 1-20.

Dupuy-Chessa, S. and L. du Bousquet (2001). Validation of UML Models Thanks to Z and Lustre. FME 2001, Verlag-Springer.

Easterbrook, S. and J. Callahan (1997). Formal methods for V&V of partial specifications: an experience report. Proceedings Third IEEE International Symposium on Requirements Engineering.

Easterbrook, S., R. Lutz, et al. (1996). Experiences using formal methods for requirements modeling, NASA.

Easterbrook, S., R. Lutz, et al. (1998). "Experiences using lightweight formal methods for requirements modeling." IEEE Transactions on Software Engineering 24(1): 4-14.

Eshuis, R. and R. Wieringa (2001). A Formal Semantics for UML Activity Diagrams Formalizing Workflow Models, University of Twente, Dept of CS.

Feather, M. (1998). Low-Cost pathways towards formal methods use. FMSP '98, Clearwater, Fl, USA, ACM.

Finney, K. and N. Fenton (1996). "Evaluating the effectiveness of Z: the claims made about CICS and where we go from here." Journal of Systems and Software 35(3): 209-16.

Flores, A., R. Moore, et al. (2001). A Formal Model of Object-Oriented Design and GoF Design Patterns. FME 2001, Springer-Verlag.

Fokkink, W. (2002). Re: Application of formal methods to Vital Processor Interlocking. D. Stidolph.

Garbett, P., J. P. Parkes, et al. (1999). Secure synthesis of code: a process improvement experiment. FM'99 - World Congress on Formal Methods in the Development of Computing Systems, Toulouse, France, Springer-Verlag.

Hall, A. (1996). "Using formal methods to develop an ATC information system." IEEE Software 13(2): 66-76.

Hall, A. (1998). What does industry need from formal specification techniques? Second IEEE Workshop on Industrial Strength Formal Specification Techniques, Boca Raton, Fla, IEEE.

Hall, A. and S. L. Pleeger (1995). "Some metrics from a formal development."

Haxthausen, A. and J. Peleska (1999). Formal development and verification of a distributed railway control system. FM'99 - World Congress on Formal Methods in the Development of Computing Systems, Toulouse, France, Springer-Verlag.

Heitmeyer, C. (1998). On the need for practical formal methods. FTRTRT'98, Springer-Verlag.

Heitmeyer, C., R. Jeffords, et al. (1996). "Automated consistency checking of requirements specifications." ACM Transactions on Software Engineering and Methodology 5(3): 231-261.

Heitmeyer, C., J. Kirby, et al. (1998). Applying the SCR Requirements Method to a Weapons Control Panel: An Experience Report. FMSP 98, Clearwater, Fl, USA, C.

Holloway, C. M. and R. Butler (1996). "Impediments to the industrial use of formal methods." IEEE Computer 29(4): 25-26.

Iglesias, M. J. F., F. J. Gonzalez-Castano, et al. (2001). From Complex Specifications to a Working Prototype. A Protocol Engineering Study. FME 2001, Springer-Verlag.

Jackson, M. (1998). "Formal methods and traditional engineering." Journal of Systems and Software 40: 191-194.

Jagadeesan, L. J., P. Godefroid, et al. (1998). Transferring formal methods technology to industry. Second IEEE Workshop on Industrial Strength Formal Specification Techniques, IEEE.

Jones, S., D. Till, et al. (1998). "Formal methods and requirements engineering: challenges and synergies." Journal of Systems and Software(40).

Katz, S. (2001). Faithful Translations among Models and Specifications. FME 2001, Verlag-Springer.

Kemmerer, R. (1990). "Integrating formal methods into the development process." IEEE Software.

King, S., J. Hammond, et al. (2000). "Is proof more cost-effective than testing?" IEEE transactions on software engineering 26(8): 675-685.

Koob, F., M. Ullmann, et al. (1996). Industrial usage of formal development methods-the VSE-tool applied in pilot projects. COMPASS '96. Proceedings of the Eleventh Annual Conference on Computer Assurance Systems Integrity. Software Safety. Process Security, Gaithersburg, MD, IEEE.

Larsen Peter, F. (1996). "Applying formal specification in industry." IEEE Software 13(3): 48-56.

Le Charlier, B. and P. Flener (1998). "Specifications are necessarily informal or: some more myths of formal methods." Journal of Systems and Software(40): 275-296.

Leveson, N. (1986). "Software safety: why, what, how." Computing surveys 18(2): 125-163.

Liskov, B. and S. Zilles (1975). "Specification techniques for data abstractions." IEEE transactions on software engineering 1(1): 7-18.

Liu, S., V. Stavridou, et al. (1995). "The practice of formal methods in safety critical systems." Journal of Systems and Software 28(1): 77-87.

Lutz, R. and Y. Ampo (1994). "Experience report: using formal methods for requirements analysis of critical spacecraft software."

McDermid, J., A. Galloway, et al. (1998). Towards industrially applicable formal methods: three small steps, and one giant leap. Conference on Formal Engineering Methods, Brisbane, Qld., Australia, IEEE Comput. Soc.

NASA (1997). Formal methods specification and analysis guidebook for the verification of software and computer systems, Volumes 1 (acquirer's guide) and 2 (practicianer's guide), NASA.

Parnas, D. L. (1998). ""Formal methods" technology transfer will fail." Journal of Systems and Software(40): 195-198.

Pedersen, J. S. (1997). Introduction to formal methods and experiences from the LaCoS and Orsted projects. IEE Colloquium on Industrial Use of Formal Methods, London, UK.

Petersen, J. L. (1998). Automatic verification of railway interlocking systems: a case study. FMSP 98, Clearwater, Fl, USA, ACM.

Puccetti, A. (2000). Improving the software evolution process using mixed specification techniques, Esprit.

Randimbivololona, F., J. Souyris, et al. (1999). Applying formal proof techniques to avionics software: a pragmatic approach. FM'99 - World Congress on Formal Methods in the Development of Computing Systems,, Toulouse, France, Springer-Verlag.

Rushby, J. (1999). Mechanized formal methods: where next? FM'99 - Formal Methods. World Congress on Formal Methods in the Development of Computing Systems, Toulouse, France, Springer-Verlag.

Rushby, J. (2002). "Using Model Checking to Help Discover Mode Confusions and Other Automation Surprises." Reliability and System Safety 75(2): 167-177.

Sabatier, D. and P. Larigue (1999). The use of the B formal method for the design and validation of the transaction mechanism for smart card applications. FM'99 - World Congress on Formal Methods in the Development of Computing Systems, Toulouse, France, Springer-Verlag.

Snook, C. and R. Harrison (2001). "Practitioners' views on the use of formal methods: an industrial survey by structured interview." Information and Software Technology 43(4): 275-83.

Stavely, A. M. (1999). High-quality software through semi-formal specfication and verification. 12th conference on software education and training.

Stavely, A. M. (2000). Integrating Z and Cleanroom. Proceedings of the Fifth Annual Langley Formal Methods Workshop, Langley, Va, NASA.

Weil, F. (1998). WIFT '98 working group report: incorporating formal methods onto industrial process. Workshop on industrial strength formal methods '98, Boca Raton, Fla, USA.

Wieringa, R. and E. H. Dubois, S. (1997). Integrating semi-formal and formal requirements. Advanced Information Systems Engineering. 9th International Conference, CAiSE'97, Barcelona, Spain, Springer-Verlag.

Wing, J. (1990). "A specifier's guide to formal methods." IEEE Computer: 8-24.

Wing, J. M. and E. M. Clarke (1996). "Formal methods: state of the art and future directions." ACM Computing Surveys 28(4): 626-643.

Wong, A. and M. Chechik (1999). Formal modeling in a commercial setting: a case study. FM'99 - World Congress on Formal Methods in the Development of Computing Systems., Toulouse, France, Springer-Verlag.

Zimmerman, M. K., K. Lundqvist, et al. (2002). "Investigating the Readability of State-Based Formal Requirements Specification Languages."

� EMBED Excel.Sheet.8 ���

Figure 5 - Formal Methods Use in Program Phases

� EMBED Excel.Sheet.8 ���

Figure 7 - Hours Expended per Program Phase in a Traditional and Formal Methods Development

� EMBED Excel.Sheet.8 ���

Figure � SEQ Figure * ARABIC �1� - Size Distribution in SLOC for Table 1 Applications

� EMBED Excel.Sheet.8 ���

Figure 2 - Size Distribution in SLOC for FME Database Applications

� EMBED Excel.Sheet.8 ���

Figure 6 - Formal Methods Distribution by Industry Sector

� EMBED Excel.Sheet.8 ���

Figure 3. Language/Tool Distribution in SLOC for Table 1 Cases

� EMBED Excel.Sheet.8 ���

Figure 4. Language/Tool Distribution in SLOC for FME Database Cases

� The studies that led up to the Hawthorne Effect may be in doubt, but the adage "What gets measured, gets improved" is still true - and that's essentially what happens on new technology pilot projects.

� The exception was the Tektronix oscilloscope development. In this case, formal methods were introduced to help bring clarity to the architectural design process. Although the use of formal methods was abandoned, the instance of use was judged to be a success based on the fact that the resulting product line was successful in a flat economy, and several generations of oscilloscopes have been built on the architectural base.

� Or "Early Majority-ers" as they'd be called in Geoffrey Moore's book Crossing the Chasm, which Craigen discusses with respect to formal methods in � ADDIN EN.CITE <EndNote><Cite><Author>Craigen</Author><Year>1999</Year><RecNum>104</RecNum><MDL><REFERENCE_TYPE>3</REFERENCE_TYPE><AUTHORS><AUTHOR>Craigen, Dan</AUTHOR></AUTHORS><YEAR>1999</YEAR><TITLE>Formal Methods Adoption: What's Working, What's Note</TITLE><SECONDARY_AUTHORS><SECONDARY_AUTHOR>Dams, D</SECONDARY_AUTHOR><SECONDARY_AUTHOR>Gerth, R</SECONDARY_AUTHOR><SECONDARY_AUTHOR>Seue, S.</SECONDARY_AUTHOR><SECONDARY_AUTHOR>Massink, M</SECONDARY_AUTHOR></SECONDARY_AUTHORS><SECONDARY_TITLE>SPIN '99</SECONDARY_TITLE><PUBLISHER>Springer-Verlag</PUBLISHER><PAGES>77-91</PAGES></MDL></Cite></EndNote>�Craigen, D. (1999). Formal Methods Adoption: What's Working, What's Note. SPIN '99, Springer-Verlag.�.

PAGE
30

[image: image6.wmf]5

1

3

1

4

1

2

1

0

1

2

3

4

5

6

VDM

SCR

PVS

B

Z

TRIO

HP-SL

FDM

[image: image7.wmf]2

1

1

6

1

1

1

1

3

2

2

4

1

1

24

1

8

0

5

10

15

20

25

30

B

CCS

Estelle

LOTOS

MALPAS

MSFOL

PrTEditor

Promula

PSF

RAISE

SDL

SVE

TRIO

TUG

VDM

UNITY

Z

_1088491143.xls
Chart4

		Req

		Design

		IVV

17

12

11

Table 1

		Name		Req		Design		IVV		Exec		Country		App		Lang		Size				Name		Exec		Country		App		App		Size		Size

		1553 Bus FDIR		Req				IVV		NASA		US		Space		SCR		0

		Ammo Storage Retrieval								MoD		UK		Defence		VDM		0				App		App		App		App		App		App		App		App

		Autopilot on Space Shuttle		Req						NASA		US		Space		PVS		0				Space		Power		Telecoms		Finance		Test Equp		Medical		Defence		Transport

		CDIS - ATC Display System		Req		Design		IVV		MoD		UK		Defence		VDM		197000				5		1		3		2		1		2		3		1		18

		CICS, IBM transaction monitor		Req		Design				IBM		UK		Finance		Z		48000

		Fault protection on Cassini		Req						NASA		US		Space		PVS		0				Country		Country		Country		Country

		FlowBus - message handing middleware		Req		Design		IVV		Bull		France		Telecoms		VDM		3500				US		UK		Italy		France

		Helicopter sensor/display		Req		Design		IVV		MoD		UK		Defence		Z		27000				5		8		1		3				17

		Med Equip - defibrillator		Req						HP		UK		Medical		HP-SL		0

		Med Equip - AIB		Req		Design				HP		US		Medical		HP-SL		4500				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Oscope		Req		Design				Techtronix		UK		Test Equp		Z		200000				VDM		SCR		PVS		B		Z		TRIO		HP-SL		FDM

		Power Plant control system		Req		Design		IVV		ENEL		Italy		Power		TRIO		0				5		1		3		1		4		1		2		1		18

		Railroad switching		Req		Design		IVV		GE		France		Transportatino		B		21000

		Rehearsal Sched Planner		Req		Design		IVV		IBM		UK		Finance		Z		1400				Size		Size		Size		Size		Size		Size		Size		Size

		Rework of control software for satellites		Req		Design		IVV		CISI		France		Space		VDM		5500				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Space Station FDIR		Req				IVV		NASA		US		Space		PVS		0				7		2				3				4				2		18

		Trusted computer		Req		Design		IVV		Unisys		?		Telecoms		FDM		1000

		Trusted gateway		Req		Design		IVV		BASE		UK		Telecoms		VDM		63						<1000		1000 - 5000		5000-50000		>50000

																								2		3		4		2

				Req		Design		IVV

				Req		Design		IVV						Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

				17		12		11						B		FDM		HP-SL		PVS		SCR		TRIO		VDM		Z

														1		1		2		3		1		1		5		4

Table 1

		

FME Database

		

Sheet3

		

		

		Name		Req						Exec		Begin Date		Duration		App		Lang		Size												App		App		App		App		App		App		App		App		App		App		App		App

		CIC development extention								IBM		1993		22		Finance		B		10000												Library		Telecoms		Manufacturing		Medical		Space		Finance		Transport		Defence		Power		Computers		Software		Networking

		Secure Gateway								ONERA-CERT		1994		24		Telecoms		B		5000		automobile										2		10		3		1		3		1		17		2		1		2		7		1																																0

		Safety-Level Communication in Railway Interlockings								U of Manchester		1994		12		Transport		CCS		500

		Formal spec and ver of ROSE protocol								LaTrobe University		1996		0		Telecoms		Estelle		3500		air				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Distributed leader algorithms								INRIA Rhone-Alps		1996		12		Telecoms		LOTOS		330						B		CCS		Estelle		LOTOS		MALPAS		MSFOL		PrTEditor		Promula		PSF		RAISE		SDL		SVE		TRIO		TUG		VDM		UNITY		Z

		ETSS								University of Liege		1992		12		Networking		LOTOS		20000				compiler		2		1		1		6		1		1		1		1		3		2		2		4		1		1		24		1		8

		Feature interaction								CWI		1996		0		Telecoms		LOTOS		360		Tanker ship

		RelREL protocol								HP UK		1992		0		Telecoms		LOTOS		324						Size		Size		Size		Size		Size		Size		Size		Size

		RelREL protocol								HP UK		1997		0		Telecoms		LOTOS		0		Rail movement monitor				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Test of security protocol								University of Liege		1996		24		Software		LOTOS		2000						21		11				10				6				2		50

		Gas Pressure and monitoriung								TAG		1994		5		Power		MALPAS		250		bus						SLOC		SLOC		SLOC		SLOC

		IMPRESS/FAROAS								U of Manchester		1992		60		Transport		MSFOL		0								<1000		1000 - 5000		5000-50000		>50000

		Modeling and verifying harmony								SE Lab, Canada		1993		13		Software		Promula		2000								9		10		6		2

		SBInterlock								Swiss Fed Inst of Tech		1991		48		Transport		PrTEditor		0								Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date

		Compact Dynamic Bus Station								Utrect University		1994		24		Transport		PSF		0		Ship protection				Year		1983		1984		1985		1986		1987		1988		1989		1990		1991		1992		1993		1994		1995		1996		1997

		Lamp replacement Policies for Traffic Signals								Utrect University		1995		24		Transport		PSF		1800						Num Starts		1		0		1		0		0		0		1		2		1		7		4		12		7		7		4

		Modular architecture of Intelligent Networks								CWI		1992		12		Telecoms		PSF		750

		Oersted ON-Board Software								Cap Gemini		1994		36		Space		RAISE		61000						Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration

		PraCoSy								Intl Institute for SW Development		1992		48		Transport		RAISE		0						0		>0		<=6		>6		<=12		>12		<=24		>24

		NewCorRe								AT&T		1990		24		Telecoms		SDL		7500				Months		6		8				11				17				8		50

		Video on demand								Alcatel Telecomm		1994		24		Telecoms		SDL		3000								< 6 mos		6 - 12 mos		12 - 24 mos		> 24 mos

		Automobile Cruise Control								Renault		1997		2		Transport		SVE		5000								8		11		17		8

		Control logic for mill ine in steel plant								Siemans		1997		7		Manufacturing		SVE		0				FM Tools

		Helicopter Alarm Control System								Siemans		1997		2		Transport		SVE		0

		Military aircraft engine controls								SNECMA Systems		1995		48		Transport		SVE		0

		Traffic management system								Politecnico di Milano		1995		5		Transport		TRIO		2000

		Library system								Arizona State U		-		0		Library		TUG		976

		I/O subsystem								UT, Bull		1989		24		Computers		UNITY		0

		BIBDIA								Norsk Data GmbH		1985		60		Library		VDM		500				Automated code generation

		Cancan Mediation Device								Cap Gemini		1996		12		Telecoms		VDM		1500		Air

		CAT compiler								Norsk Data GmbH		1983		96		Software		VDM		0

		CombiCan								Cap Gemini		1992		24		Transport		VDM		0

		Min Safe Altitude Warning System										1994		4		Transport		VDM++		0

		Ammunication Control System								MoD		1990		12		Defence		VDM-SL		700

		Chemical Tanker Load Balancing								Cap Gemini		1995		12		Transport		VDM-SL		0

		DUST Expert								UK Health & Safety		1995		21		Transport		VDM-SL		20000

		IFAD-VDM-SL toolbox upgrade								IFAD		1993		36		Software		VDM-SL		0

		Material Tracking manager								U of Manchester		1994		11		Manufacturing		VDM-SL		0

		mimic interpreter								Institute of Applie CS		1994		19		Software		VDM-SL		70000

		PICGAL								Aerospatiale Espace & Defence		1996		18		Space		VDM-SL		0

		Queue Admin Tool								Bull Information Sys		1994		4		Software		VDM-SL		3500

		Railway Switch Control								Danish State Rail		-		0		Transport		VDM-SL		0

		Cabin Illumination Function								DST GmbH		1992		24		Transport		Z		6500

		Command and Control of space equp								Daimler-Benz		1996		24		Space		Z		0

		Data logger for embedded medical device								Telectronics		1995		3		Medical		Z		0

		Graphical overlay management								Daimler-Benz		1995		12		Computers		Z		1000

		Missile Tracking								Daimler-Benz		1994		12		Defence		Z		900

		Spec of safe language for prog controllers								Daimler-Benz		1993		24		Software		Z		17000

		System Test Facility								DST GmbH		-		1.5		Manufacturing		Z		0

		Traffic control system								DST GmbH		1994		24		Transport		Z		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Num Starts

Year

No. FM Starts

Number of Formal Methods Starts per Year, FME

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		0

		0

		0

		0

Duration Distribution of FME Projects

		

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Computer Related
20%

		

_1091945869.xls
Chart2

		Analysis		Analysis

		Specification		Specification

		Design		Design

		Test & Implementation		Test & Implementation

Traditional

Formal Method

50

55

75

156

150

178

300

193

Sheet1

				Traditional		Traditional		Formal Method		Formal Method

		Analysis		50		50		55		55

		Specification		25		75		101		156

		Design		75		150		22		178

		Test & Implementation		150		300		15		193

														Figure 6 - Hours Expended per Program Phase, Traditional vs. Formal Methods

Sheet1

		

Traditional

Formal Method

Sheet2

		

Sheet3

		

_1091954211.xls
Chart1

		Space

		Power

		Telecoms

		Finance

		Test Equp

		Medical

		Defence

		Transport

5

1

3

2

1

2

3

1

Table 1

		Name		Req		Design		IVV		Exec		Country		App		Lang		Size				Name		Exec		Country		App		App		Size		Size

		1553 Bus FDIR		Req				IVV		NASA		US		Space		SCR		0

		Ammo Storage Retrieval								MoD		UK		Defence		VDM		0				App		App		App		App		App		App		App		App

		Autopilot on Space Shuttle		Req						NASA		US		Space		PVS		0				Space		Power		Telecoms		Finance		Test Equp		Medical		Defence		Transport

		CDIS - ATC Display System		Req		Design		IVV		MoD		UK		Defence		VDM		197000				5		1		3		2		1		2		3		1		18

		CICS, IBM transaction monitor		Req		Design				IBM		UK		Finance		Z		48000

		Fault protection on Cassini		Req						NASA		US		Space		PVS		0				Country		Country		Country		Country

		FlowBus - message handing middleware		Req		Design		IVV		Bull		France		Telecoms		VDM		3500				US		UK		Italy		France

		Helicopter sensor/display		Req		Design		IVV		MoD		UK		Defence		Z		27000				5		8		1		3				17

		Med Equip - defibrillator		Req						HP		UK		Medical		HP-SL		0

		Med Equip - AIB		Req		Design				HP		US		Medical		HP-SL		4500				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Oscope		Req		Design				Techtronix		UK		Test Equp		Z		200000				VDM		SCR		PVS		B		Z		TRIO		HP-SL		FDM

		Power Plant control system		Req		Design		IVV		ENEL		Italy		Power		TRIO		0				5		1		3		1		4		1		2		1		18

		Railroad switching		Req		Design		IVV		GE		France		Transportatino		B		21000

		Rehearsal Sched Planner		Req		Design		IVV		IBM		UK		Finance		Z		1400				Size		Size		Size		Size		Size		Size		Size		Size

		Rework of control software for satellites		Req		Design		IVV		CISI		France		Space		VDM		5500				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Space Station FDIR		Req				IVV		NASA		US		Space		PVS		0				7		2				3				4				2		18

		Trusted computer		Req		Design		IVV		Unisys		?		Telecoms		FDM		1000

		Trusted gateway		Req		Design		IVV		BASE		UK		Telecoms		VDM		63						<1000		1000 - 5000		5000-50000		>50000

																								2		3		4		2

				Req		Design		IVV

				Req		Design		IVV						Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

				17		12		11						B		FDM		HP-SL		PVS		SCR		TRIO		VDM		Z

														1		1		2		3		1		1		5		4

Table 1

		0

		0

		0

		0

FME Database

		

Sheet3

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		Name		Req						Exec		Begin Date		Duration		App		Lang		Size												App		App		App		App		App		App		App		App		App		App		App		App

		CIC development extention								IBM		1993		22		Finance		B		10000												Library		Telecoms		Manufacturing		Medical		Space		Finance		Transport		Defence		Power		Computers		Software		Networking

		Secure Gateway								ONERA-CERT		1994		24		Telecoms		B		5000		automobile										2		10		3		1		3		1		17		2		1		2		7		1																																0

		Safety-Level Communication in Railway Interlockings								U of Manchester		1994		12		Transport		CCS		500

		Formal spec and ver of ROSE protocol								LaTrobe University		1996		0		Telecoms		Estelle		3500		air				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Distributed leader algorithms								INRIA Rhone-Alps		1996		12		Telecoms		LOTOS		330						B		CCS		Estelle		LOTOS		MALPAS		MSFOL		PrTEditor		Promula		PSF		RAISE		SDL		SVE		TRIO		TUG		VDM		UNITY		Z

		ETSS								University of Liege		1992		12		Networking		LOTOS		20000				compiler		2		1		1		6		1		1		1		1		3		2		2		4		1		1		24		1		8

		Feature interaction								CWI		1996		0		Telecoms		LOTOS		360		Tanker ship

		RelREL protocol								HP UK		1992		0		Telecoms		LOTOS		324						Size		Size		Size		Size		Size		Size		Size		Size

		RelREL protocol								HP UK		1997		0		Telecoms		LOTOS		0		Rail movement monitor				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Test of security protocol								University of Liege		1996		24		Software		LOTOS		2000						21		11				10				6				2		50

		Gas Pressure and monitoriung								TAG		1994		5		Power		MALPAS		250		bus						SLOC		SLOC		SLOC		SLOC

		IMPRESS/FAROAS								U of Manchester		1992		60		Transport		MSFOL		0								<1000		1000 - 5000		5000-50000		>50000

		Modeling and verifying harmony								SE Lab, Canada		1993		13		Software		Promula		2000								9		10		6		2

		SBInterlock								Swiss Fed Inst of Tech		1991		48		Transport		PrTEditor		0								Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date

		Compact Dynamic Bus Station								Utrect University		1994		24		Transport		PSF		0		Ship protection				Year		1983		1984		1985		1986		1987		1988		1989		1990		1991		1992		1993		1994		1995		1996		1997

		Lamp replacement Policies for Traffic Signals								Utrect University		1995		24		Transport		PSF		1800						Num Starts		1		0		1		0		0		0		1		2		1		7		4		12		7		7		4

		Modular architecture of Intelligent Networks								CWI		1992		12		Telecoms		PSF		750

		Oersted ON-Board Software								Cap Gemini		1994		36		Space		RAISE		61000						Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration

		PraCoSy								Intl Institute for SW Development		1992		48		Transport		RAISE		0						0		>0		<=6		>6		<=12		>12		<=24		>24

		NewCorRe								AT&T		1990		24		Telecoms		SDL		7500				Months		6		8				11				17				8		50

		Video on demand								Alcatel Telecomm		1994		24		Telecoms		SDL		3000								< 6 mos		6 - 12 mos		12 - 24 mos		> 24 mos

		Automobile Cruise Control								Renault		1997		2		Transport		SVE		5000								8		11		17		8

		Control logic for mill ine in steel plant								Siemans		1997		7		Manufacturing		SVE		0				FM Tools

		Helicopter Alarm Control System								Siemans		1997		2		Transport		SVE		0

		Military aircraft engine controls								SNECMA Systems		1995		48		Transport		SVE		0

		Traffic management system								Politecnico di Milano		1995		5		Transport		TRIO		2000

		Library system								Arizona State U		-		0		Library		TUG		976

		I/O subsystem								UT, Bull		1989		24		Computers		UNITY		0

		BIBDIA								Norsk Data GmbH		1985		60		Library		VDM		500				Automated code generation

		Cancan Mediation Device								Cap Gemini		1996		12		Telecoms		VDM		1500		Air

		CAT compiler								Norsk Data GmbH		1983		96		Software		VDM		0

		CombiCan								Cap Gemini		1992		24		Transport		VDM		0

		Min Safe Altitude Warning System										1994		4		Transport		VDM++		0

		Ammunication Control System								MoD		1990		12		Defence		VDM-SL		700

		Chemical Tanker Load Balancing								Cap Gemini		1995		12		Transport		VDM-SL		0

		DUST Expert								UK Health & Safety		1995		21		Transport		VDM-SL		20000

		IFAD-VDM-SL toolbox upgrade								IFAD		1993		36		Software		VDM-SL		0

		Material Tracking manager								U of Manchester		1994		11		Manufacturing		VDM-SL		0

		mimic interpreter								Institute of Applie CS		1994		19		Software		VDM-SL		70000

		PICGAL								Aerospatiale Espace & Defence		1996		18		Space		VDM-SL		0

		Queue Admin Tool								Bull Information Sys		1994		4		Software		VDM-SL		3500

		Railway Switch Control								Danish State Rail		-		0		Transport		VDM-SL		0

		Cabin Illumination Function								DST GmbH		1992		24		Transport		Z		6500

		Command and Control of space equp								Daimler-Benz		1996		24		Space		Z		0

		Data logger for embedded medical device								Telectronics		1995		3		Medical		Z		0

		Graphical overlay management								Daimler-Benz		1995		12		Computers		Z		1000

		Missile Tracking								Daimler-Benz		1994		12		Defence		Z		900

		Spec of safe language for prog controllers								Daimler-Benz		1993		24		Software		Z		17000

		System Test Facility								DST GmbH		-		1.5		Manufacturing		Z		0

		Traffic control system								DST GmbH		1994		24		Transport		Z		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Num Starts

Year

No. FM Starts

Number of Formal Methods Starts per Year, FME

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		0

		0

		0

		0

Duration Distribution of FME Projects

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Computer Related
20%

		

_1088489247.xls
Chart1

		<1000
SLOC

		1000 - 5000
SLOC

		5000-50000
SLOC

		>50000
SLOC

9

10

6

2

Table 1

		Name		Req		Design		IVV		Exec		Country		App		Lang		Size				Name		Exec		Country		App		App		Size		Size

		1553 Bus FDIR		Req				IVV		NASA		US		Space		SCR		0

		Ammo Storage Retrieval								MoD		UK		Defence		VDM		0				App		App		App		App		App		App		App		App

		Autopilot on Space Shuttle		Req						NASA		US		Space		PVS		0				Space		Power		Telecoms		Finance		Test Equp		Medical		Defence		Transport

		CDIS - ATC Display System		Req		Design		IVV		MoD		UK		Defence		VDM		197000				5		1		3		2		1		2		3		1		18

		CICS, IBM transaction monitor		Req		Design				IBM		UK		Finance		Z		48000

		Fault protection on Cassini		Req						NASA		US		Space		PVS		0				Country		Country		Country		Country

		FlowBus - message handing middleware		Req		Design		IVV		Bull		France		Telecoms		VDM		3500				US		UK		Italy		France

		Helicopter sensor/display		Req		Design		IVV		MoD		UK		Defence		Z		27000				5		8		1		3				17

		Med Equip - defibrillator		Req						HP		UK		Medical		HP-SL		0

		Med Equip - AIB		Req		Design				HP		US		Medical		HP-SL		4500				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Oscope		Req		Design				Techtronix		UK		Test Equp		Z		200000				VDM		SCR		PVS		B		Z		TRIO		HP-SL		FDM

		Power Plant control system		Req		Design		IVV		ENEL		Italy		Power		TRIO		0				5		1		3		1		4		1		2		1		18

		Railroad switching		Req		Design		IVV		GE		France		Transportatino		B		21000

		Rehearsal Sched Planner		Req		Design		IVV		IBM		UK		Finance		Z		1400				Size		Size		Size		Size		Size		Size		Size		Size

		Rework of control software for satellites		Req		Design		IVV		CISI		France		Space		VDM		5500				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Space Station FDIR		Req				IVV		NASA		US		Space		PVS		0				7		2				3				4				2		18

		Trusted computer		Req		Design		IVV		Unisys		?		Telecoms		FDM		1000

		Trusted gateway		Req		Design		IVV		BASE		UK		Telecoms		VDM		63						<1000		1000 - 5000		5000-50000		>50000

																								2		3		4		2

				Req		Design		IVV

				Req		Design		IVV						Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

				17		12		11						B		FDM		HP-SL		PVS		SCR		TRIO		VDM		Z

														1		1		2		3		1		1		5		4

Table 1

		0

		0

		0

		0

Country

FM Applications by Country

FME Database

		0

		0

		0

		0

		0

		0

		0

		0

Sheet3

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		Name		Req						Exec		Begin Date		Duration		App		Lang		Size												App		App		App		App		App		App		App		App		App		App		App		App

		CIC development extention								IBM		1993		22		Finance		B		10000												Library		Telecoms		Manufacturing		Medical		Space		Finance		Transport		Defence		Power		Computers		Software		Networking

		Secure Gateway								ONERA-CERT		1994		24		Telecoms		B		5000		automobile										2		10		3		1		3		1		17		2		1		2		7		1																																0

		Safety-Level Communication in Railway Interlockings								U of Manchester		1994		12		Transport		CCS		500

		Formal spec and ver of ROSE protocol								LaTrobe University		1996		0		Telecoms		Estelle		3500		air				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Distributed leader algorithms								INRIA Rhone-Alps		1996		12		Telecoms		LOTOS		330						B		CCS		Estelle		LOTOS		MALPAS		MSFOL		PrTEditor		Promula		PSF		RAISE		SDL		SVE		TRIO		TUG		VDM		UNITY		Z

		ETSS								University of Liege		1992		12		Networking		LOTOS		20000				compiler		2		1		1		6		1		1		1		1		3		2		2		4		1		1		24		1		8

		Feature interaction								CWI		1996		0		Telecoms		LOTOS		360		Tanker ship

		RelREL protocol								HP UK		1992		0		Telecoms		LOTOS		324						Size		Size		Size		Size		Size		Size		Size		Size

		RelREL protocol								HP UK		1997		0		Telecoms		LOTOS		0		Rail movement monitor				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Test of security protocol								University of Liege		1996		24		Software		LOTOS		2000						21		11				10				6				2		50

		Gas Pressure and monitoriung								TAG		1994		5		Power		MALPAS		250		bus						SLOC		SLOC		SLOC		SLOC

		IMPRESS/FAROAS								U of Manchester		1992		60		Transport		MSFOL		0								<1000		1000 - 5000		5000-50000		>50000

		Modeling and verifying harmony								SE Lab, Canada		1993		13		Software		Promula		2000								9		10		6		2

		SBInterlock								Swiss Fed Inst of Tech		1991		48		Transport		PrTEditor		0								Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date

		Compact Dynamic Bus Station								Utrect University		1994		24		Transport		PSF		0		Ship protection				Year		1983		1984		1985		1986		1987		1988		1989		1990		1991		1992		1993		1994		1995		1996		1997

		Lamp replacement Policies for Traffic Signals								Utrect University		1995		24		Transport		PSF		1800						Num Starts		1		0		1		0		0		0		1		2		1		7		4		12		7		7		4

		Modular architecture of Intelligent Networks								CWI		1992		12		Telecoms		PSF		750

		Oersted ON-Board Software								Cap Gemini		1994		36		Space		RAISE		61000						Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration

		PraCoSy								Intl Institute for SW Development		1992		48		Transport		RAISE		0						0		>0		<=6		>6		<=12		>12		<=24		>24

		NewCorRe								AT&T		1990		24		Telecoms		SDL		7500				Months		6		8				11				17				8		50

		Video on demand								Alcatel Telecomm		1994		24		Telecoms		SDL		3000								< 6 mos		6 - 12 mos		12 - 24 mos		> 24 mos

		Automobile Cruise Control								Renault		1997		2		Transport		SVE		5000								8		11		17		8

		Control logic for mill ine in steel plant								Siemans		1997		7		Manufacturing		SVE		0				FM Tools

		Helicopter Alarm Control System								Siemans		1997		2		Transport		SVE		0

		Military aircraft engine controls								SNECMA Systems		1995		48		Transport		SVE		0

		Traffic management system								Politecnico di Milano		1995		5		Transport		TRIO		2000

		Library system								Arizona State U		-		0		Library		TUG		976

		I/O subsystem								UT, Bull		1989		24		Computers		UNITY		0

		BIBDIA								Norsk Data GmbH		1985		60		Library		VDM		500				Automated code generation

		Cancan Mediation Device								Cap Gemini		1996		12		Telecoms		VDM		1500		Air

		CAT compiler								Norsk Data GmbH		1983		96		Software		VDM		0

		CombiCan								Cap Gemini		1992		24		Transport		VDM		0

		Min Safe Altitude Warning System										1994		4		Transport		VDM++		0

		Ammunication Control System								MoD		1990		12		Defence		VDM-SL		700

		Chemical Tanker Load Balancing								Cap Gemini		1995		12		Transport		VDM-SL		0

		DUST Expert								UK Health & Safety		1995		21		Transport		VDM-SL		20000

		IFAD-VDM-SL toolbox upgrade								IFAD		1993		36		Software		VDM-SL		0

		Material Tracking manager								U of Manchester		1994		11		Manufacturing		VDM-SL		0

		mimic interpreter								Institute of Applie CS		1994		19		Software		VDM-SL		70000

		PICGAL								Aerospatiale Espace & Defence		1996		18		Space		VDM-SL		0

		Queue Admin Tool								Bull Information Sys		1994		4		Software		VDM-SL		3500

		Railway Switch Control								Danish State Rail		-		0		Transport		VDM-SL		0

		Cabin Illumination Function								DST GmbH		1992		24		Transport		Z		6500

		Command and Control of space equp								Daimler-Benz		1996		24		Space		Z		0

		Data logger for embedded medical device								Telectronics		1995		3		Medical		Z		0

		Graphical overlay management								Daimler-Benz		1995		12		Computers		Z		1000

		Missile Tracking								Daimler-Benz		1994		12		Defence		Z		900

		Spec of safe language for prog controllers								Daimler-Benz		1993		24		Software		Z		17000

		System Test Facility								DST GmbH		-		1.5		Manufacturing		Z		0

		Traffic control system								DST GmbH		1994		24		Transport		Z		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Num Starts

Year

No. FM Starts

Number of Formal Methods Starts per Year, FME

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		0

		0

		0

		0

Duration Distribution of FME Projects

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Computer Related
20%

		

_1088489583.xls
Chart3

		VDM

		SCR

		PVS

		B

		Z

		TRIO

		HP-SL

		FDM

5

1

3

1

4

1

2

1

Table 1

		Name		Req		Design		IVV		Exec		Country		App		Lang		Size				Name		Exec		Country		App		App		Size		Size

		1553 Bus FDIR		Req				IVV		NASA		US		Space		SCR		0

		Ammo Storage Retrieval								MoD		UK		Defence		VDM		0				App		App		App		App		App		App		App		App

		Autopilot on Space Shuttle		Req						NASA		US		Space		PVS		0				Space		Power		Telecoms		Finance		Test Equp		Medical		Defence		Transport

		CDIS - ATC Display System		Req		Design		IVV		MoD		UK		Defence		VDM		197000				5		1		3		2		1		2		3		1		18

		CICS, IBM transaction monitor		Req		Design				IBM		UK		Finance		Z		48000

		Fault protection on Cassini		Req						NASA		US		Space		PVS		0				Country		Country		Country		Country

		FlowBus - message handing middleware		Req		Design		IVV		Bull		France		Telecoms		VDM		3500				US		UK		Italy		France

		Helicopter sensor/display		Req		Design		IVV		MoD		UK		Defence		Z		27000				5		8		1		3				17

		Med Equip - defibrillator		Req						HP		UK		Medical		HP-SL		0

		Med Equip - AIB		Req		Design				HP		US		Medical		HP-SL		4500				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Oscope		Req		Design				Techtronix		UK		Test Equp		Z		200000				VDM		SCR		PVS		B		Z		TRIO		HP-SL		FDM

		Power Plant control system		Req		Design		IVV		ENEL		Italy		Power		TRIO		0				5		1		3		1		4		1		2		1		18

		Railroad switching		Req		Design		IVV		GE		France		Transportatino		B		21000

		Rehearsal Sched Planner		Req		Design		IVV		IBM		UK		Finance		Z		1400				Size		Size		Size		Size		Size		Size		Size		Size

		Rework of control software for satellites		Req		Design		IVV		CISI		France		Space		VDM		5500				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Space Station FDIR		Req				IVV		NASA		US		Space		PVS		0				7		2				3				4				2		18

		Trusted computer		Req		Design		IVV		Unisys		?		Telecoms		FDM		1000

		Trusted gateway		Req		Design		IVV		BASE		UK		Telecoms		VDM		63						<1000		1000 - 5000		5000-50000		>50000

																								2		3		4		2

				Req		Design		IVV

				Req		Design		IVV						Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

				17		12		11						B		FDM		HP-SL		PVS		SCR		TRIO		VDM		Z

														1		1		2		3		1		1		5		4

Table 1

		

Country

FM Applications by Country

FME Database

		

Sheet3

		

		

		

		

		

		

		Name		Req						Exec		Begin Date		Duration		App		Lang		Size												App		App		App		App		App		App		App		App		App		App		App		App

		CIC development extention								IBM		1993		22		Finance		B		10000												Library		Telecoms		Manufacturing		Medical		Space		Finance		Transport		Defence		Power		Computers		Software		Networking

		Secure Gateway								ONERA-CERT		1994		24		Telecoms		B		5000		automobile										2		10		3		1		3		1		17		2		1		2		7		1																																0

		Safety-Level Communication in Railway Interlockings								U of Manchester		1994		12		Transport		CCS		500

		Formal spec and ver of ROSE protocol								LaTrobe University		1996		0		Telecoms		Estelle		3500		air				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Distributed leader algorithms								INRIA Rhone-Alps		1996		12		Telecoms		LOTOS		330						B		CCS		Estelle		LOTOS		MALPAS		MSFOL		PrTEditor		Promula		PSF		RAISE		SDL		SVE		TRIO		TUG		VDM		UNITY		Z

		ETSS								University of Liege		1992		12		Networking		LOTOS		20000				compiler		2		1		1		6		1		1		1		1		3		2		2		4		1		1		24		1		8

		Feature interaction								CWI		1996		0		Telecoms		LOTOS		360		Tanker ship

		RelREL protocol								HP UK		1992		0		Telecoms		LOTOS		324						Size		Size		Size		Size		Size		Size		Size		Size

		RelREL protocol								HP UK		1997		0		Telecoms		LOTOS		0		Rail movement monitor				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Test of security protocol								University of Liege		1996		24		Software		LOTOS		2000						21		11				10				6				2		50

		Gas Pressure and monitoriung								TAG		1994		5		Power		MALPAS		250		bus						SLOC		SLOC		SLOC		SLOC

		IMPRESS/FAROAS								U of Manchester		1992		60		Transport		MSFOL		0								<1000		1000 - 5000		5000-50000		>50000

		Modeling and verifying harmony								SE Lab, Canada		1993		13		Software		Promula		2000								9		10		6		2

		SBInterlock								Swiss Fed Inst of Tech		1991		48		Transport		PrTEditor		0								Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date

		Compact Dynamic Bus Station								Utrect University		1994		24		Transport		PSF		0		Ship protection				Year		1983		1984		1985		1986		1987		1988		1989		1990		1991		1992		1993		1994		1995		1996		1997

		Lamp replacement Policies for Traffic Signals								Utrect University		1995		24		Transport		PSF		1800						Num Starts		1		0		1		0		0		0		1		2		1		7		4		12		7		7		4

		Modular architecture of Intelligent Networks								CWI		1992		12		Telecoms		PSF		750

		Oersted ON-Board Software								Cap Gemini		1994		36		Space		RAISE		61000						Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration

		PraCoSy								Intl Institute for SW Development		1992		48		Transport		RAISE		0						0		>0		<=6		>6		<=12		>12		<=24		>24

		NewCorRe								AT&T		1990		24		Telecoms		SDL		7500				Months		6		8				11				17				8		50

		Video on demand								Alcatel Telecomm		1994		24		Telecoms		SDL		3000								< 6 mos		6 - 12 mos		12 - 24 mos		> 24 mos

		Automobile Cruise Control								Renault		1997		2		Transport		SVE		5000								8		11		17		8

		Control logic for mill ine in steel plant								Siemans		1997		7		Manufacturing		SVE		0				FM Tools

		Helicopter Alarm Control System								Siemans		1997		2		Transport		SVE		0

		Military aircraft engine controls								SNECMA Systems		1995		48		Transport		SVE		0

		Traffic management system								Politecnico di Milano		1995		5		Transport		TRIO		2000

		Library system								Arizona State U		-		0		Library		TUG		976

		I/O subsystem								UT, Bull		1989		24		Computers		UNITY		0

		BIBDIA								Norsk Data GmbH		1985		60		Library		VDM		500				Automated code generation

		Cancan Mediation Device								Cap Gemini		1996		12		Telecoms		VDM		1500		Air

		CAT compiler								Norsk Data GmbH		1983		96		Software		VDM		0

		CombiCan								Cap Gemini		1992		24		Transport		VDM		0

		Min Safe Altitude Warning System										1994		4		Transport		VDM++		0

		Ammunication Control System								MoD		1990		12		Defence		VDM-SL		700

		Chemical Tanker Load Balancing								Cap Gemini		1995		12		Transport		VDM-SL		0

		DUST Expert								UK Health & Safety		1995		21		Transport		VDM-SL		20000

		IFAD-VDM-SL toolbox upgrade								IFAD		1993		36		Software		VDM-SL		0

		Material Tracking manager								U of Manchester		1994		11		Manufacturing		VDM-SL		0

		mimic interpreter								Institute of Applie CS		1994		19		Software		VDM-SL		70000

		PICGAL								Aerospatiale Espace & Defence		1996		18		Space		VDM-SL		0

		Queue Admin Tool								Bull Information Sys		1994		4		Software		VDM-SL		3500

		Railway Switch Control								Danish State Rail		-		0		Transport		VDM-SL		0

		Cabin Illumination Function								DST GmbH		1992		24		Transport		Z		6500

		Command and Control of space equp								Daimler-Benz		1996		24		Space		Z		0

		Data logger for embedded medical device								Telectronics		1995		3		Medical		Z		0

		Graphical overlay management								Daimler-Benz		1995		12		Computers		Z		1000

		Missile Tracking								Daimler-Benz		1994		12		Defence		Z		900

		Spec of safe language for prog controllers								Daimler-Benz		1993		24		Software		Z		17000

		System Test Facility								DST GmbH		-		1.5		Manufacturing		Z		0

		Traffic control system								DST GmbH		1994		24		Transport		Z		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Num Starts

Year

No. FM Starts

Number of Formal Methods Starts per Year, FME

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		0

		0

		0

		0

Duration Distribution of FME Projects

		

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Computer Related
20%

		

_1088490186.xls
Chart7

		B

		CCS

		Estelle

		LOTOS

		MALPAS

		MSFOL

		PrTEditor

		Promula

		PSF

		RAISE

		SDL

		SVE

		TRIO

		TUG

		VDM

		UNITY

		Z

2

1

1

6

1

1

1

1

3

2

2

4

1

1

24

1

8

Table 1

		Name		Exec		Country		App		Lang		Size				Name		Exec		Country		App		App		Size		Size

		1553 Bus FDIR		NASA		US		Space		SCR		0

		Ammo Storage Retrieval		MoD		UK		Defence		VDM		0				App		App		App		App		App		App		App		App

		Autopilot on Space Shuttle		NASA		US		Space		PVS		0				Space		Finance		Telecoms		Medical		Test Equp		Power		Transport		Defence

		CDIS - ATC Display System		MoD		UK		Defence		VDM		197000				5		2		3		2		1		1		1		3		18

		CICS, IBM transaction monitor		IBM		UK		Finance		Z		48000

		Fault protection on Cassini		NASA		US		Space		PVS		0				Country		Country		Country		Country

		FlowBus - message handing middleware		Bull		France		Telecoms		VDM		3500				US		UK		Italy		France

		Helicopter sensor/display		MoD		UK		Defence		Z		27000				5		8		1		3				17

		Med Equip - defibrillator		HP		UK		Medical		HP-SL		0

		Med Equip - AIB		HP		US		Medical		HP-SL		4500				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Oscope		Techtronix		UK		Test Equp		Z		200000				VDM		SCR		PVS		B		Z		TRIO		HP-SL		FDM

		Power Plant control system		ENEL		Italy		Power		TRIO		0				5		1		3		1		4		1		2		1		18

		Railroad switching		GE		France		Transportatino		B		21000

		Rehearsal Sched Planner		IBM		UK		Finance		Z		1400				Size		Size		Size		Size		Size		Size		Size		Size

		Rework of control software for satellites		CISI		France		Space		VDM		5500				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Space Station FDIR		NASA		US		Space		PVS		0				7		2				3				4				2		18

		Trusted computer		Unisys		?		Telecoms		FDM		1000

		Trusted gateway		BASE		UK		Telecoms		VDM		63						<1000		1000 - 5000		5000-50000		>50000

																		2		3		4		2

								Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

								B		FDM		HP-SL		PVS		SCR		TRIO		VDM		Z

								1		1		2		3		1		1		5		4

Table 1

		

Country

FM Applications by Country

FME Database

		

Sheet3

		

		

		

		Name		Exec		Begin Date		Duration		App		Lang		Size						App		App		App		App		App		App		App		App		App		App		App		App

		CIC development extention		IBM		1993		22		Finance		B		10000						Computers		Library		Software		Manufacturing		Networking		Space		Finance		Telecoms		Medical		Power		Transport		Defence

		Secure Gateway		ONERA-CERT		1994		24		Telecoms		B		5000		automobile				2		2		7		3		1		3		1		10		1		1		17		2		50

		Safety-Level Communication in Railway Interlockings		U of Manchester		1994		12		Transport		CCS		500

		Formal spec and ver of ROSE protocol		LaTrobe University		1996		0		Telecoms		Estelle		3500		air				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Distributed leader algorithms		INRIA Rhone-Alps		1996		12		Telecoms		LOTOS		330						B		CCS		Estelle		LOTOS		MALPAS		MSFOL		PrTEditor		Promula		PSF		RAISE		SDL		SVE		TRIO		TUG		VDM		UNITY		Z

		ETSS		University of Liege		1992		12		Networking		LOTOS		20000				compiler		2		1		1		6		1		1		1		1		3		2		2		4		1		1		24		1		8

		Feature interaction		CWI		1996		0		Telecoms		LOTOS		360		Tanker ship

		RelREL protocol		HP UK		1992		0		Telecoms		LOTOS		324						Size		Size		Size		Size		Size		Size		Size		Size

		RelREL protocol		HP UK		1997		0		Telecoms		LOTOS		0		Rail movement monitor				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Test of security protocol		University of Liege		1996		24		Software		LOTOS		2000						21		11				10				6				2		50

		Gas Pressure and monitoriung		TAG		1994		5		Power		MALPAS		250		bus						SLOC		SLOC		SLOC		SLOC

		IMPRESS/FAROAS		U of Manchester		1992		60		Transport		MSFOL		0								<1000		1000 - 5000		5000-50000		>50000

		Modeling and verifying harmony		SE Lab, Canada		1993		13		Software		Promula		2000								9		10		6		2

		SBInterlock		Swiss Fed Inst of Tech		1991		48		Transport		PrTEditor		0								Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date

		Compact Dynamic Bus Station		Utrect University		1994		24		Transport		PSF		0		Ship protection				Year		1983		1984		1985		1986		1987		1988		1989		1990		1991		1992		1993		1994		1995		1996		1997

		Lamp replacement Policies for Traffic Signals		Utrect University		1995		24		Transport		PSF		1800						Num Starts		1		0		1		0		0		0		1		2		1		7		4		12		7		7		4

		Modular architecture of Intelligent Networks		CWI		1992		12		Telecoms		PSF		750

		Oersted ON-Board Software		Cap Gemini		1994		36		Space		RAISE		61000						Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration

		PraCoSy		Intl Institute for SW Development		1992		48		Transport		RAISE		0						0		>0		<=6		>6		<=12		>12		<=24		>24

		NewCorRe		AT&T		1990		24		Telecoms		SDL		7500				Months		6		8				11				17				8		50

		Video on demand		Alcatel Telecomm		1994		24		Telecoms		SDL		3000								< 6 mos		6 - 12 mos		12 - 24 mos		> 24 mos

		Automobile Cruise Control		Renault		1997		2		Transport		SVE		5000								8		11		17		8

		Control logic for mill ine in steel plant		Siemans		1997		7		Manufacturing		SVE		0				FM Tools

		Helicopter Alarm Control System		Siemans		1997		2		Transport		SVE		0

		Military aircraft engine controls		SNECMA Systems		1995		48		Transport		SVE		0

		Traffic management system		Politecnico di Milano		1995		5		Transport		TRIO		2000

		Library system		Arizona State U		-		0		Library		TUG		976

		I/O subsystem		UT, Bull		1989		24		Computers		UNITY		0

		BIBDIA		Norsk Data GmbH		1985		60		Library		VDM		500				Automated code generation

		Cancan Mediation Device		Cap Gemini		1996		12		Telecoms		VDM		1500		Air

		CAT compiler		Norsk Data GmbH		1983		96		Software		VDM		0

		CombiCan		Cap Gemini		1992		24		Transport		VDM		0

		Min Safe Altitude Warning System				1994		4		Transport		VDM++		0

		Ammunication Control System		MoD		1990		12		Defence		VDM-SL		700

		Chemical Tanker Load Balancing		Cap Gemini		1995		12		Transport		VDM-SL		0

		DUST Expert		UK Health & Safety		1995		21		Transport		VDM-SL		20000

		IFAD-VDM-SL toolbox upgrade		IFAD		1993		36		Software		VDM-SL		0

		Material Tracking manager		U of Manchester		1994		11		Manufacturing		VDM-SL		0

		mimic interpreter		Institute of Applie CS		1994		19		Software		VDM-SL		70000

		PICGAL		Aerospatiale Espace & Defence		1996		18		Space		VDM-SL		0

		Queue Admin Tool		Bull Information Sys		1994		4		Software		VDM-SL		3500

		Railway Switch Control		Danish State Rail		-		0		Transport		VDM-SL		0

		Cabin Illumination Function		DST GmbH		1992		24		Transport		Z		6500

		Command and Control of space equp		Daimler-Benz		1996		24		Space		Z		0

		Data logger for embedded medical device		Telectronics		1995		3		Medical		Z		0

		Graphical overlay management		Daimler-Benz		1995		12		Computers		Z		1000

		Missile Tracking		Daimler-Benz		1994		12		Defence		Z		900

		Spec of safe language for prog controllers		Daimler-Benz		1993		24		Software		Z		17000

		System Test Facility		DST GmbH		-		1.5		Manufacturing		Z		0

		Traffic control system		DST GmbH		1994		24		Transport		Z		0

		

		

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Num Starts

Year

No. FM Starts

Number of Formal Methods Starts per Year, FME

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		

Duration Distribution of FME Projects

		

		

		<1000
SLOC

		1000 - 5000
SLOC

		5000-50000
SLOC

		>50000
SLOC

9

10

6

2

		

_1088488698.xls
Chart3

		<1000

		1000 - 5000

		5000-50000

		>50000

2

3

4

2

Table 1

		Name		Exec		Country		App		Lang		Size				Name		Exec		Country		App		App		Size		Size

		1553 Bus FDIR		NASA		US		Space		SCR		0

		Ammo Storage Retrieval		MoD		UK		Defence		VDM		0				App		App		App		App		App		App		App		App

		Autopilot on Space Shuttle		NASA		US		Space		PVS		0				Space		Finance		Telecoms		Medical		Test Equp		Power		Transport		Defence

		CDIS - ATC Display System		MoD		UK		Defence		VDM		197000				5		2		3		2		1		1		1		3		18

		CICS, IBM transaction monitor		IBM		UK		Finance		Z		48000

		Fault protection on Cassini		NASA		US		Space		PVS		0				Country		Country		Country		Country

		FlowBus - message handing middleware		Bull		France		Telecoms		VDM		3500				US		UK		Italy		France

		Helicopter sensor/display		MoD		UK		Defence		Z		27000				5		8		1		3				17

		Med Equip - defibrillator		HP		UK		Medical		HP-SL		0

		Med Equip - AIB		HP		US		Medical		HP-SL		4500				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Oscope		Techtronix		UK		Test Equp		Z		200000				VDM		SCR		PVS		B		Z		TRIO		HP-SL		FDM

		Power Plant control system		ENEL		Italy		Power		TRIO		0				5		1		3		1		4		1		2		1		18

		Railroad switching		GE		France		Transportatino		B		21000

		Rehearsal Sched Planner		IBM		UK		Finance		Z		1400				Size		Size		Size		Size		Size		Size		Size		Size

		Rework of control software for satellites		CISI		France		Space		VDM		5500				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Space Station FDIR		NASA		US		Space		PVS		0				7		2				3				4				2		18

		Trusted computer		Unisys		?		Telecoms		FDM		1000

		Trusted gateway		BASE		UK		Telecoms		VDM		63						<1000		1000 - 5000		5000-50000		>50000

																		2		3		4		2

								Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

								B		FDM		HP-SL		PVS		SCR		TRIO		VDM		Z

								1		1		2		3		1		1		5		4

Table 1

		

Country

FM Applications by Country

FME Database

		

Sheet3

		

		

		0

		0

		0

		0

		0

		0

		0

		0

		Name		Exec		Begin Date		Duration		App		Lang		Size						App		App		App		App		App		App		App		App		App		App		App		App

		CIC development extention		IBM		1993		22		Finance		B		10000						Computers		Library		Software		Manufacturing		Networking		Space		Finance		Telecoms		Medical		Power		Transport		Defence

		Secure Gateway		ONERA-CERT		1994		24		Telecoms		B		5000		automobile				2		2		7		3		1		3		1		10		1		1		17		2		50

		Safety-Level Communication in Railway Interlockings		U of Manchester		1994		12		Transport		CCS		500

		Formal spec and ver of ROSE protocol		LaTrobe University		1996		0		Telecoms		Estelle		3500		air				Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang		Lang

		Distributed leader algorithms		INRIA Rhone-Alps		1996		12		Telecoms		LOTOS		330						B		PrTEditor		Promula		PSF		RAISE		SDL		SVE		TRIO		TUG		VDM		UNITY		Z		Estelle		CCS		LOTOS		MALPAS		MSFOL

		ETSS		University of Liege		1992		12		Networking		LOTOS		20000				compiler		2		1		1		3		2		2		4		1		1		24		1		8		1		1		6		1		1

		Feature interaction		CWI		1996		0		Telecoms		LOTOS		360		Tanker ship

		RelREL protocol		HP UK		1992		0		Telecoms		LOTOS		324						Size		Size		Size		Size		Size		Size		Size		Size

		RelREL protocol		HP UK		1997		0		Telecoms		LOTOS		0		Rail movement monitor				0		>0		<=1000		>1000		<=5000		>5000		<=50000		>50000

		Test of security protocol		University of Liege		1996		24		Software		LOTOS		2000						21		11				10				6				2		50

		Gas Pressure and monitoriung		TAG		1994		5		Power		MALPAS		250		bus						SLOC		SLOC		SLOC		SLOC

		IMPRESS/FAROAS		U of Manchester		1992		60		Transport		MSFOL		0								<1000		1000 - 5000		5000-50000		>50000

		Modeling and verifying harmony		SE Lab, Canada		1993		13		Software		Promula		2000								9		10		6		2

		SBInterlock		Swiss Fed Inst of Tech		1991		48		Transport		PrTEditor		0								Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date		Begin Date

		Compact Dynamic Bus Station		Utrect University		1994		24		Transport		PSF		0		Ship protection				Year		1983		1984		1985		1986		1987		1988		1989		1990		1991		1992		1993		1994		1995		1996		1997

		Lamp replacement Policies for Traffic Signals		Utrect University		1995		24		Transport		PSF		1800						Num Starts		1		0		1		0		0		0		1		2		1		7		4		12		7		7		4

		Modular architecture of Intelligent Networks		CWI		1992		12		Telecoms		PSF		750

		Oersted ON-Board Software		Cap Gemini		1994		36		Space		RAISE		61000						Duration		Duration		Duration		Duration		Duration		Duration		Duration		Duration

		PraCoSy		Intl Institute for SW Development		1992		48		Transport		RAISE		0						0		>0		<=6		>6		<=12		>12		<=24		>24

		NewCorRe		AT&T		1990		24		Telecoms		SDL		7500				Months		6		8				11				17				8		50

		Video on demand		Alcatel Telecomm		1994		24		Telecoms		SDL		3000								< 6 mos		6 - 12 mos		12 - 24 mos		> 24 mos

		Automobile Cruise Control		Renault		1997		2		Transport		SVE		5000								8		11		17		8

		Control logic for mill ine in steel plant		Siemans		1997		7		Manufacturing		SVE		0				FM Tools

		Helicopter Alarm Control System		Siemans		1997		2		Transport		SVE		0

		Military aircraft engine controls		SNECMA Systems		1995		48		Transport		SVE		0

		Traffic management system		Politecnico di Milano		1995		5		Transport		TRIO		2000

		Library system		Arizona State U		-		0		Library		TUG		976

		I/O subsystem		UT, Bull		1989		24		Computers		UNITY		0

		BIBDIA		Norsk Data GmbH		1985		60		Library		VDM		500				Automated code generation

		Cancan Mediation Device		Cap Gemini		1996		12		Telecoms		VDM		1500		Air

		CAT compiler		Norsk Data GmbH		1983		96		Software		VDM		0

		CombiCan		Cap Gemini		1992		24		Transport		VDM		0

		Min Safe Altitude Warning System				1994		4		Transport		VDM++		0

		Ammunication Control System		MoD		1990		12		Defence		VDM-SL		700

		Chemical Tanker Load Balancing		Cap Gemini		1995		12		Transport		VDM-SL		0

		DUST Expert		UK Health & Safety		1995		21		Transport		VDM-SL		20000

		IFAD-VDM-SL toolbox upgrade		IFAD		1993		36		Software		VDM-SL		0

		Material Tracking manager		U of Manchester		1994		11		Manufacturing		VDM-SL		0

		mimic interpreter		Institute of Applie CS		1994		19		Software		VDM-SL		70000

		PICGAL		Aerospatiale Espace & Defence		1996		18		Space		VDM-SL		0

		Queue Admin Tool		Bull Information Sys		1994		4		Software		VDM-SL		3500

		Railway Switch Control		Danish State Rail		-		0		Transport		VDM-SL		0

		Cabin Illumination Function		DST GmbH		1992		24		Transport		Z		6500

		Command and Control of space equp		Daimler-Benz		1996		24		Space		Z		0

		Data logger for embedded medical device		Telectronics		1995		3		Medical		Z		0

		Graphical overlay management		Daimler-Benz		1995		12		Computers		Z		1000

		Missile Tracking		Daimler-Benz		1994		12		Defence		Z		900

		Spec of safe language for prog controllers		Daimler-Benz		1993		24		Software		Z		17000

		System Test Facility		DST GmbH		-		1.5		Manufacturing		Z		0

		Traffic control system		DST GmbH		1994		24		Transport		Z		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Num Starts

Year

No. FM Starts

Number of Formal Methods Starts per Year, FME

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		0

		0

		0

		0

Duration Distribution of FME Projects

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		

		

		

